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a b s t r a c t

Estimating time delays for signal alignment is important for many applications. This paper
extends a successful frequency domain cost function minimization algorithm capable of
estimating time delays to within a fraction of sampling periods. Since the function has a
narrow basin of attraction around the global minimum, this method often diverges when
initial time delay estimates are not sufficiently close to the desired optimal time delays.
We propose a second order successive minimization method with reduced sensitivity to
initial guesses. Both an analytic expression for the cost function Hessian matrix and a
condition guaranteeing positive-definiteness are presented. This condition facilitates the
construction of sequentially modified cost functions whose nested minimization increases
the basin of attraction around the global minimum. This successive minimization
technique is more robust and yields higher accuracy when compared to the original
method and the well-known method of Cross Correlator (CC).

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Time-delay estimation is crucial in many applications
such as seismology, radar, sonar and communication sys-
tems, and biomedical sciences [1–14]. Most of these methods
yield integer multiple estimates of the sampling period.
Since time delays are, in general, not integer multiples of
the sampling periods, fitting parabolas to samples in a
neighborhood of the cross correlation peak provides sub-
sample accuracies. For noisy waveforms, estimators that rely
on a single extremum of the correlation profile can have

degraded performance. To reduce the effect of noise and
increase accuracy, the algorithm in [1] matches multiple
peaks of the cross correlation and autocorrelation for these
waveforms. The algorithms in [2] use splines instead of
parabolas. Other variations of this approach are described
in [3] and the references therein. The algorithms in [4,5] also
try to achieve subsample estimation accuracy. Approaches
using the Hilbert Transform [6] and the state space realiza-
tion method [7] have also appeared.

This paper builds on the time-delay estimation method
described in [5]. This method uses the Discrete Fourier
Transforms (DFTs) of multiple waveforms and achieves accu-
rate subsample time delay estimates between these wave-
forms. It relies on applying linear phase shift operators to the
DFTs of the waveforms to achieve least spectral differences
between shifted DFTs in the frequency domain. The cost
function is the sum of spectral differences between all pairs
of shifted DFTs, and its minimization yields optimal time
delays. However when a gradient based iterative algorithm is
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used to minimize the cost function, this approach becomes
sensitive to the initial time-delay estimates. The global mini-
mizer has a narrow basin of attraction and minimization
algorithms often converge to a local minimizer when the
initial estimates are not in the basin of the global minimizer. A
new Hessian-based successive minimization approach with
increased robustness is presented. An analytic expression for
the Hessian matrix and a condition guaranteeing its positive
definiteness are derived. This condition implies that narrower
frequency bands, over which signals are aligned, yield larger
basins of attraction. The successive minimization method uses
this information to start with a cost function defined over a
narrow frequency band and then increases the width gradu-
ally to generate successive cost functions each with smaller
basins of attraction. We demonstrate that this new approach
substantially increases robustness in simulated and real data.
In the next section, we formulate the cost function and derive
an analytic expression for its gradient.

2. Problem formulation

Consider a system of N frequency-band limited real valued
signals siðtÞ ¼ s0ðt�τoi ÞþηiðtÞ for i¼ 1; 2;…; N�1, where τoi
represents the time delay between siðtÞ and the reference
signal s0ðtÞ, and ηiðtÞ represents random noise on the ith
signal. Let yiðlÞ for i¼ 1; 2;…; N�1 denote the correspond-
ing signals sampled at L equally spaced time samples
l¼ 0; 1;…; L�1 respectively. Let the L-point discrete Fourier
transform (DFT) of yiðlÞ be given by the expression

YiðkÞ ¼ Y0ðkÞe� jωkτ
o
i for i¼ 0; 1; 2;…; N�1 ð1Þ

where τo0 ¼ 0 and ωk ¼ 2πk=L. Consider the function

f ðτm; τnÞ ¼ ∑
k2

k ¼ k1

jYmðkÞejωkτm �YnðkÞejωkτn j2 ð2Þ

defined over 0rk1ok2rL�1 with ωk1 ¼ 2πk1=L and
ωk2 ¼ 2πk2=L representing the lower and upper frequency
limits. Note that f ðτm; τnÞZ0 for τmaτom and τnaτon. Rearran-
ging terms in f ðτm; τnÞ yields

f ðτm; τnÞ ¼ Cf �2 ∑
k2

k ¼ k1

RefYmðkÞejωkτmYn

nðkÞe� jωkτn g ð3Þ

where n denotes complex conjugate and Cf ¼∑k2
k ¼ k1fjYmðkÞj2þjYnðkÞj2g is independent of τm and τn. Let

τ
~

o ¼ ½τo1; τo2;…; τoN�1�T denote the vector of time delays.
Following [5] we will estimate the time delay vector τ

~

o by

minimizing the cost function:

Jðτ
~
Þ ¼ ∑

N�1

m ¼ 0
∑

N�1

n ¼ 0
f ðτm; τnÞ: ð4Þ

The function Jðτ
~
Þ represents the total energy difference in the

frequency domain between all possible shifted pairs of wave-
forms over the frequency range ½ωk1 ;ωk2 �. Clearly, the largest
possible such range is when k1 ¼ 0 and k2 ¼ L=2 (which
represents the ½ Nyquist frequency) and Jðτ

~
Þ is minimized

when τ
~
¼ τ

~

o. Gradient based iterative algorithms such as
steepest descent or conjugate gradient suggested in [5,8]
require the evaluation of the gradient ∇Jðτ

~
Þ for minimizing

Jðτ
~
Þ. The following expression for the pth entry in that vector

was derived in [5]:

∂Jðτ
~
Þ

∂τp
¼ �4 ∑

k2

k ¼ k1

Re jωkYpðkÞejωkτp ∑
N�1

n ¼ 0

nap

Yn

nðkÞe� jωkτn

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð5Þ

for p¼ 1; 2;…; N�1. An issue with minimizing Jðτ
~
Þ using a

gradient based algorithm is that initial estimates must be
sufficiently close to τ

~

o to ensure convergence. The vector τ
~

o is
not known a priori, therefore convergence of the algorithm is
not certain. To reduce this uncertainty, a successive minimiza-
tion method using the Hessian matrix of Jðτ

~
Þ is proposed in

the next section.

3. Successive minimization second order algorithm

The Hessian matrix Hðτ
~
Þ of Jðτ

~
Þ can be written:

where

Gp;r ¼ Gp;rðτp; τrÞ ¼ 4 ∑
k2

k ¼ k1

ω2
kRefYpðkÞYn

r ðkÞejωkðτp � τr Þg for

p; r¼ 1; 2;…; N�1 and par ð7Þ
and

Gp;0 ¼ Gp;0ðτpÞ ¼ 4 ∑
k2

k ¼ k1

ω2
kRefY0ðkÞYn

pðkÞe� jωkτp g for

p¼ 1; 2;…; N�1: ð8Þ
The sum of all entries in the pth row (or column) of Hðτ

~
Þ

is equal to Gp;0. The positive definiteness of Hðτ
~
Þ is character-

ized in the following lemma:

Lemma. If jτp�τopjo ðL=8k2Þ and jτr�τor joðL=8k2Þ, then
Gp;r40 and Hðτ

~
Þ is positive definite.

Hðτ
~
Þ ¼

G1;0þ ∑
N�1

n ¼ 1;na1
G1;n �G1;2 ⋯ �G1;N�1

�G2;1 G2;0þ ∑
N�1

n ¼ 1;na2
G2;n ⋯ �G2;N�1

⋮ ⋮ ⋮

�GN�1;1 �GN�1;2 ⋯ GN�1;0þ ∑
N�1

n ¼ 1;naN�1
GðN�1Þ;n

2
666666666664

3
777777777775

ð6Þ
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