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a b s t r a c t

We study lp ð0opo1) minimization under both additive and multiplicative noise.
Theorems are presented for completely perturbed lp ð0opo1) minimization. Theorems
reveal that under suitable conditions the stability of lp minimization with certain values of
0opo1 is limited by the noise level in the observation. The restricted isometry property
condition and the worst case reconstruction error bound are given in terms of restricted
isometry constant and relative perturbations. Simulation results are presented and
compared to state-of-the-art methods.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Compressed sensing (CS) aims to recover a sparse or
near-sparse signal xARn from mon linear measurements

y¼Φx

where ΦARm�n is the measurement matrix modeling the
measurement system. In practice measurements y are
corrupted with additive noise e, therefore a perturbed
measurement vector in the form of

ŷ ¼Φxþe ð1Þ
is considered.

However in standard CS, the measurement matrix Φ is
assumed known a priori. Consider that the measurement
matrix Φ is corrupted by a perturbation E. The replacement
of Φ by ΦþE in (1) introduces a multiplicative noise term
Ex in the measurements in addition to additive noise. This

situation can be encountered in several applications. For
example, the quantization operation during the imple-
mentation of the measurement matrix in a sensor causes
matrix perturbation. Furthermore, in radar imaging [1]
and communication problems [2] when Φ represents a
system model, E can model the system perturbation.
Also hardware imperfections due to the non-exact com-
ponent values used in the low-pass filter section of a
random demodulator can be another reason for matrix
perturbation [3,4].

In [5], stability analysis of the basis pursuit denoising
(BPDN) is given for the completely perturbed CS problem.
Here, completely perturbed means that measurements are
corrupted with additive noise as well as multiplicative
noise. This completely perturbed framework is based on
the relative error bounds of the measurement matrix and
additive noise. It is shown that the signal recovery is
robust and the recovery error is linearly proportional to
the perturbation level. Similar recovery results are also
presented in [6–8].

In this paper a completely perturbed CS scenario is
considered for lp ð0opo1) minimization. The main result
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is that lp ð0opo1) minimization for the completely
perturbed scenario is stable under suitable conditions.

1.1. Notations and symbols

This paper uses the similar notations and techniques of [5].
Let the perturbations E and e be quantified with the relative
bounds

‖E‖2
‖Φ‖2

rɛΦ;
‖E‖ðkÞ2

‖Φ‖ðkÞ2

rɛðkÞΦ ;
‖e‖2
‖y‖2

rɛy; ð2Þ

‖ � ‖2 denotes the spectral norm and ‖ � ‖ðkÞ2 represents the
largest spectral norm taken over all k-column sub-matrices. rk
and sk in (3) define the signal's tail relative to its head. xk is the
best k-term approximation to x and xkc ¼ x�xk.

rk≔
‖xkc‖2
‖xk‖2

; sk≔
‖xkc‖1ffiffiffi
k

p
‖xk‖2

ð3Þ

1.2. CS background

In standard CS recovery, the reconstructed signal x̂ is
the solution to the basis pursuit denoising (BPDN) problem

min‖x̂‖1 subject to ‖ŷ�Φx̂‖2rε;

where ε is the upper bound level of the noise term e in (1),
and can be solved by using convex optimization techniques
such as interior-point methods or homotopy methods.
Candès and Tao [9] show that the stable recovery of BPDN
is based on a special matrix property called restricted
isometry property (RIP).

Definition 1. A matrix Φ satisfies the RIP of order k if
there exists a constant δkA ð0;1Þ such that

ð1�δkÞ‖x‖22r‖Φx‖22r ð1þδkÞ‖x‖22
holds for all k-sparse signals x with restricted isometry
constant (RIC) δk.

Theorem 1 (Candès [10]). Assume that δ2ko
ffiffiffi
2

p
�1. Then

the reconstructed signal x̂ to the BPDN problem satisfies

‖x� x̂‖2rC0εþC1k
�1=2‖x�xk‖1

where

C0 ¼
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þδ2k

p
1�ð

ffiffiffi
2

p
þ1Þδ2k

and C1 ¼
2½1þð

ffiffiffi
2

p
�1Þδ2k�

1�ð
ffiffiffi
2

p
þ1Þδ2k

:

Theorem 1 states that it is possible to recover a k-sparse
signal (x¼ xk) provided that the measurement matrix Φ
satisfies δ2ko

ffiffiffi
2

p
�1.

1.3. Completely perturbed BPDN

In the completely perturbed CS, the following theorem
for BPDN is stated in [5].

Theorem 2. Let the relative perturbations ɛΦ, ɛ
ðkÞ
Φ , ɛð2kÞΦ and

ɛy be as in (2). Define the constants κðkÞΦ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þδk

p
=
ffiffiffiffiffiffiffiffiffiffiffiffi
1�δk

p
and γΦ ¼ ‖Φ‖2=

ffiffiffiffiffiffiffiffiffiffiffiffi
1�δk

p
due to matrix Φ.

Suppose that the signal x satisfies rkþsko1=κðkÞΦ . If RIC for
Φ satisfies

δ2ko
ffiffiffi
2

p

ð1þɛð2kÞΦ Þ2
�1 ð4Þ

then the solution ẑ to

min‖ẑ‖1 subject to ‖ŷ�Aẑ‖2rɛ′Φ;k;y

using A¼ΦþE satisfies

‖ẑ�x‖2r Ĉ0ɛ
′
Φ;k;yþD̂0

‖x�xk‖1
k1=2

with total noise parameter

ɛ′Φ;k;y ¼
ɛðkÞΦ κðkÞΦ þɛΦγΦrk
1�κðkÞΦ ðrkþskÞ

þɛy

 !
‖y‖2

for some constants Ĉ0 and D̂0.

Theorem 2 denotes that if matrix perturbation E is
small then the signal recovery is robust and the recovery
error grows linearly with the perturbation level. Note that
ɛð2kÞΦ o ffiffi½p

4�2�1 since δ2kZ0.

2. Completely perturbed lp ð0opo1) minimization

Recently, there has been great interest in sparse recov-
ery problem in CS using non-convex minimization meth-
ods. Focal undetermined system solver (FOCUSS) [11]
is proposed in the solution of BP by replacing the objective
l1 norm with lp norm. It is solved using iteratively
reweighted least squares (IRLS). In [12] regularized IRLS
is used in the solution and it is shown that lp ð0opo1)
minimization reconstructs sparse signal exactly with
fewer measurements compared to unregularized IRLS.
Saab and Yılmaz [13] studied the stability and robustness
of lp ð0opo1) minimization and it is shown that the
sufficient conditions for exact reconstruction are weaker.
Their results also indicate that the exact reconstruction is
possible with fewer measurements compared to BP.

In this section theoretical results for lp ð0opo1)
minimization are presented for completely perturbed CS.
Sufficient conditions for stable recovery of lp ð0opo1)
minimization are given. Before proving our main results,
we utilize a lemma from [5].

Lemma 1. Assume that RIC for matrix Φ is δk and relative
perturbation ɛðkÞΦ is associated with matrix E. Then the RIC δ̂k
for matrix A satisfies

δ̂krð1þδkÞð1þɛðkÞΦ Þ2�1

Theorem 3. Let the relative perturbations ɛΦ, ɛ
ð2akÞ
Φ , and ɛy

be as in (2) and suppose that the signal x satisfies
rkþsko1=κðkÞΦ . If RIC for Φ satisfies

δ2ako
2þ

ffiffiffi
2

p
a1=2�1=p

ð1þ
ffiffiffi
2

p
a1=2�1=pÞð1þɛð2akÞΦ Þ2

�1 ð5Þ
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