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a b s t r a c t

In this paper, we compare Fourier-based and wavelet-based denoising techniques

applied to both synthetic and real experimental geophysical data. The Fourier-based

technique used for comparison is the classical Wiener estimator, and the wavelet-based

techniques tested include soft and hard wavelet thresholding and the empirical Bayes

(EB) method. Both real and synthetic data sets were used to compare the Wiener

estimator in the Fourier domain, soft thresholding, hard thresholding, and the EB

wavelet-based estimators. Four synthetic data sets, originally designed by Donoho and

Johnstone to isolate and mimic various features found in real signals, were corrupted

with correlated Gaussian noise to test the various denoising methods. Quantitative

comparison of the error between the true and estimated signal revealed that the

wavelet-based methods outperformed the Wiener estimator in most cases. Also, the EB

method outperformed the soft and hard thresholding methods in general because the

wavelet representation is not sparse at the coarsest levels, which leads to poor

estimation of the noise variance by the thresholding methods. Microseismic and

streaming potential data from laboratory tests were used for comparison and showed

similar trends as in the synthetic data analysis.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Real world data rarely comes clean. In order to extract
useful information from raw data, a theoretically sound
and robust denoising method is often required. Here, we
present and compare several nonparametric denoising
techniques theoretically and numerically through syn-
thetic and real experimental geophysical data, with the
ultimate goal of helping one choose the appropriate
techniques for different situations.

Before the development of a unifying theory for
wavelets over the last 15 years, the classical Wiener filter
operating in the Fourier domain was one of the most

widely used denoising methods [1]. Although the Wiener
filter operating in the Fourier domain is optimal among all
linear estimators, it relies on the critical assumption that
the real signal is circular stationary. This assumption is an
idealization. Also, since the Wiener filter shrinks the
Fourier coefficients of the data according to the signal-to-
noise ratio (SNR), though the noise spectrum is in generally
not known a priori, the SNR requires estimation. This can be
difficult in the Fourier basis since the Fourier representa-
tion of the signal is often not sparse. The representation of
a signal in a basis is sparse when the signal strength is
concentrated in a few of the coefficients of the basis. The
notion of sparsity of signal representation is fundamental
in function estimation in the Gaussian noise model [2].
While the sparsity of representation of a signal is directly
related to the choice of a basis, the Gaussian noise
representation is not sparse in any given basis.
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Donoho and Johnstone made a fundamental break-
through by showing that nonlinear thresholding estima-
tors operating in the wavelet domain achieve nearly
minimax risk over a large class of functions [3–5]. This
property, together with their ease of implementation
and generality, has led to the development of nonlinear
thresholding estimators as a powerful function estima-
tion tool. The crucial step in level-dependent wavelet
thresholding is estimating the threshold at each level
(scale) from the wavelet coefficients of the noisy data.
Donoho and Johnstone showed that the optimal threshold
at each level is proportional to the standard deviation of
the noise. This can be estimated from the median of
certain wavelet coefficients. The validity of the threshold
estimation is based on the assumption that the wavelet
representation of the deterministic signal is sparse, and
thus most of the wavelet coefficients are due to noise. This
assumption may be invalid when the signal does not
have a sparse representation, especially at coarse levels,
leading to error in estimating the optimal threshold at
each level.

To fix this deficiency, several researchers have inves-
tigated an empirical Bayes (EB) approach for data
denoising in a wavelet basis [6–12]. A mixture prior
distribution is placed on the wavelet coefficients of the
signal at each level, which is designed to capture the
sparseness of the wavelet coefficients. The parameters in
the prior and the noise variance are then estimated by
maximizing the marginal log likelihood function from the
noisy data. Subsequently, the signal can be estimated from
the posterior distribution. Maximization in the EB
approach usually requires iterative numerical methods,
and therefore, the EB method can be slower than soft and
hard thresholding techniques.

There are several parts to this paper. First, various
important theoretical results are stated and discussed for
the Wiener estimator, the soft and hard thresholding
estimators, and the EB method. Second, the reasons that
signal estimation in Gaussian noise is often better in a
wavelet basis than in the Fourier basis are investigated.
Third, it is shown how the EB method with a Gaussian
mixture prior distribution on the signal wavelet coeffi-
cients avoids some of the deficiencies of soft and hard
thresholding estimators. Finally, key properties of each
estimator are studied and compared through both real
and synthetic data examples.

The current work is applied in a experimental
geophysical context: namely denoising signals from
microseismic (MS) and streaming potential (SP) labora-
tory experiments. The estimated signals from the MS
experiment can be used to determine p- and s-wave
speeds of the test specimen and used for structural
monitoring purposes, for example, fracture detection
and localization. On the other hand, the estimated
signals from the SP experiment can be used to deter-
mine the so-called SP coupling coefficient, which relates
the voltage observed for a given fluid pressure change
for flow in earth materials. The coupling coefficient
estimated for different flow scenarios in the labo-
ratory can then be used to predict the SP response in the
field.

2. Theoretical results

2.1. Problem statement

The goal is to estimate the function f ð�Þ from measured
data fyng where the model assumed is

yn ¼ f ðtnÞ þ en; n 2Z (1)

with feng stationary Gaussian noise.

2.2. Wiener filter

The classical Wiener estimator is the optimal linear
estimator operating in the Fourier domain [1]. Let F, Y, and
W be the discrete Fourier transform of signal f, data y, and
noise e, and introduce an N � N matrix G:¼ðgmlÞ0pm;loN .
Also, define t2:¼ft2

mg0pmoN and s2:¼fs2
mg0pmoN as the

diagonal values of the covariance matrices of F and W.
Assuming t2 and s2 are known, the Wiener estimate of
the signal is

F̂m ¼
t2

m

t2
m þ s2

m

Ym (2)

with variance

Vðtm;smÞ ¼
t2

ms2
m

t2
m þ s2

m

. (3)

The Wiener estimate of the signal f̂ can now be obtained
by the discrete inverse Fourier transform

f̂ n ¼
XN�1

m¼0

hnmF̂m; (4)

where fhnm:¼ expð2pinmÞ=
ffiffiffiffi
N
p

;n;m ¼ 0; . . . ;N � 1g is the
discrete Fourier basis. The Wiener estimator (2) shrinks
the Fourier coefficients of the data based on the SNR
towards 0; and the larger the noise power, the more the
estimator shrinks the Fourier coefficients.

In practice, computing the Wiener estimator in (2)
requires estimating the noise and signal variances (s2

m and
t2

m). This can be done by various techniques (see e.g.
[13,14]). Once the noise and signal variance estimates (ŝ2

m

and t̂2
m) are obtained, an approximate standard deviation

estimate s for the Wiener estimator can be estimated via
(3) by

s ¼
1ffiffiffiffi
N
p

XN�1

m¼0

Vðt̂m; ŝmÞ. (5)

An approximate marginal 99% confidence interval for
the Wiener estimator f̂ can then be constructed as
½f̂ n � 2:58sf̂ n þ 2:58s�.

The Wiener estimator has the following problems: (1)
the representation of real world signals that are spatially
inhomogeneous is usually not sparse in the Fourier basis,
so it is difficult to separate the noise from the signal, and
(2) it is a linear estimator. On the other hand, these signals
may have sparse representation in the wavelet basis, so it
may be worthwhile to use a nonlinear estimator in the
wavelet domain.
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