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a b s t r a c t

In this paper, a parametric correlation measure is introduced based on the fractional

Fourier transform. Based on fundamental properties of this transform, maximum

correlation is identified with a line structure in the time–frequency plane. Correlating

measured and model data for different values of the parameter yields intersecting lines

in the time–frequency plane, whose intersection is identified as the joint time–

frequency offset of the measured data, as compared to the model data. Both theoretical

and practical aspects of the method are discussed, while examples illustrate both the

performance of the method and the geometric concept behind. The approach is

particularly designed for analysing measured signals with different onset time (travel

time) and frequency shift (Doppler), as compared to a given signal model.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

In physics, measured data are often used to resolve
parameters in a physical model by comparing measured
data with data to be expected from the model. For finding
best matching parameters for such a physical model,
correlating observed data and given ground truth data is a
classical approach. In specific problems measured data
differ from model data by means of onset/offset time
and/or frequency modulation.

In satellite navigation for example [1,2], data are
measured at a receiver with a time delay, depending on
the distance from the satellite to the receiver. Further-
more, as the satellite is moving when transmitting signals
a Doppler frequency shift is introduced. Knowing both
time and frequency offsets is needed to decode the
satellite’s navigation message properly.

Also in other fields, like radar and sonar data proces-
sing joint detection of time delay and Doppler shift plays
an important role. In these fields, an ambiguity function is
commonly used to deal with this problem.

In Satellite Navigation literature, e.g. [1,2], correlating
measured and model data is an appropriate way to detect
both time- and frequency-offsets. However, correlation
coefficients have to be computed for all possible pairs of
time and frequency offsets. In this paper we introduce a
correlator for detecting joint time–frequency offsets,
based on the fractional Fourier transform (FRFT). Depend-
ing on a parameter a, the FRFT computes a representation
of a signal along a line in the time–frequency domain
through the origin and with tangent tana. Varying a
yields a set of equations, from which values for the joint
offset can be computed. Redundancy in the set of
equations is used to obtain a pool of solutions in the
time–frequency plane. A unique solution for the time–
frequency offset can be obtained from this, using statistics
of such a pool.

The FRFT also appears in relation to the problem of
joint time–frequency offset detection in radar and sonar,
namely as part of the radon ambiguity transform (RAT)
[3,4]. However, since this paper is devoted to a general-
isation of classical (Fourier-based) correlation schemes,
we will only briefly compare both FRFT-based methods.

The paper is organised as follows. In Section 2 we
briefly discuss the FRFT and recall some of its properties to
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be used in the sequel of the paper. In Section 3 we
introduce the idea of correlating using the FRFT. Further-
more, we discuss the aspect of redundancy when varying
the parameter a. Section 4 deals with some practical
remarks on the approach. We discuss possible ways of
efficiently choosing values for a, a normalisation for the
correlation measure and we consider frequency modula-
tions in practice. Furthermore, the previously mentioned
relation with the RAT is discussed. The approach is
illustrated by means of two examples in Section 5. Also
a geometric interpretation of the approach is treated in
that section.

2. The FRFT

The FRFT was originally described by Kober [5] and
was later introduced for signal processing by Namias [6].
This was done, starting from fractional powers of the
eigenvalues of the Fourier transform and their corre-
sponding eigenfunctions. With this formalism an integral
representation of this operator was derived in a heuristic
manner. In [7,8], McBride and Kerr provided a rigorous
mathematical framework in which the formal work of
Namias could be situated. We briefly discuss this
mathematical framework, Namias’ formal work and
present properties of the transform, as are treated in
more detail in [9–11].

The definition of the FRFT Fa of order a for signals s 2

L2
ðRÞ is given by

Fa½s�ðtÞ ¼
Caffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pj sinaj
p

Z
R

sðuÞ ei ððu2þt2Þ�ðcotaÞ=2�ut cscaÞ du, (1)

for 0ojajop, with

Ca ¼ ei ððp=4Þ sgn a�a=2Þ. (2)

The parameter Ca in (2) guarantees that the energy of the
signal is conserved through Fa.

For a ¼ 0 and a ¼ p the FRFT is defined by

F0½s�ðtÞ ¼ sðtÞ and Fp½s�ðtÞ ¼ sð�tÞ. (3)

For aeð�p;p� the FRFT is defined by periodicity
Faþ2p ¼ Fa. Particularly, we have from (1)

Fp=2 ¼ F and Fnp=2 ¼ Fn; n 2 Z,

with F the Fourier transform for signals in L2
ðRÞ.

A further relation with the classical Fourier transform
on L2

ðRÞ is given by its eigenfunctions hkðtÞ, the k-th order
Hermite functions and corresponding eigenvalues eika.
These eigenfunctions are the same as for the Fourier
transform, while the eigenvalues coincide for a ¼ p=2.
Based on the equation

Fahk ¼ eikahk, (4)

the first property of the FRFT we discuss here is derived
straightforwardly

FaFbs ¼ Faþbs, (5)

for all a;b 2 R. This relation is commonly known as the
index law.

Besides this property, for analysing signals in both time
and frequency it is interesting to consider the relation of

the FRFT with the time-shift operator and the frequency
modulator, given by Tt0

½s�ðtÞ ¼ sðt � t0Þ and Mo0
½s�ðtÞ ¼

eio0tsðtÞ, respectively, for t0;o0 2 R. For these operators,
the following intertwining relations hold:

FaTt0
¼ eit2

0ðsin 2aÞ=4M�t0 sinaTt0 cosaFa, (6)

FaMo0
¼ e�io2

0
ðsin 2aÞ=4Mo0 cosaTo0 sinaFa, (7)

see e.g. [11]. As a result of these relations we have

jFaMo0
Tt0
½s�ðtÞj ¼ jFa½s�ðt � t0 cosa�o0 sinaÞj, (8)

which will be exploited by the a-modulus correlator in the
next section.

A well-known property of the FRFT that also follows
from (6) and (7) is its rotation property by means of the
Wigner distribution. In fact, following [11] it can be shown
that

W ½Fas�ðt;oÞ ¼W ½s�ðt cosa�o sina; t sinaþo cosaÞ, (9)

with W ½s� the Wigner distribution. The same property also
holds for the cross-Wigner distribution.

To finalise this brief introduction on the FRFT, we
observe that for digitally processing a number of fast FRFT
algorithm exists. For a discussion on various implementa-
tions we refer to [12].

3. The a-modulus correlator

A way to detect a time-offset t0 in a measured signal
sðtÞ is to correlate the measured signal Tt0

s with its
groundtruth signal (if available) sðtÞ. The correlation
Cs;Tt0

sðtÞ given by

Cs;Tt0
sðtÞ ¼

Z
R

sðuÞTt0
sðt þ uÞdu (10)

attains its maximum value ksk2 at t ¼ t0, the time-offset.
In other words

t0 ¼ arg max Cs;Tt0
s. (11)

Detection of a frequency offset o0 can be realised in a
similar way. Since

FMo0
sðoÞ ¼ Fsðo�o0Þ

we have

o0 ¼ arg max CFs;FMo0
s. (12)

Identification of both time and frequency offsets in a
signal can be achieved in a similar manner. However,
then the problem becomes two-dimensional, since
the maximum of (10) depends on both t0 and o0. For
sampled signals, this means that all possible offsets t0 and
o0 have to be considered, which can be very time
consuming.

In the case of detecting time–frequency offsets in
measured data, given a model of the signal, we can use a
less robust but fast algorithm. Instead of comparing
signals and their spectra we can also correlate the
amplitude spectra of both the measured data and the
given signal model. Since a translation only contributes to
the phase of the signal, we have

o0 ¼ arg max CjFsj;jFMo0
Tt0

sj. (13)
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