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a b s t r a c t

In this paper, the robust H1 filtering problem is investigated for networked stochastic

systems with norm bounded uncertainties and imperfect multiple transmitted measure-

ments. The considered imperfect measurements contain randomly occurring sensor

nonlinearities and packet dropouts, which are represented by multiple independent

Markov chains with partially unknown transition probabilities. A one to one mapping is

constructed to map the multiple independent Markov chains to an augmented one for

facilitating the resultant system analysis. A sufficient condition is established to

guarantee the exponential mean-square stability with fast decay rate and a certain H1
performance level of the filtering error systems. Then, the parameters of the full-order

filter are expressed in terms of linear matrix inequalities (LMIs). Finally, a numerical

example is shown to demonstrate the effectiveness of the proposed method.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The H1 filtering problem has been received persistent
attention in the past half century [1]. Due to that, on the
one hand, it does not require to know the precise system
model and a prior information of the external noise
compared with Kalman filter. On the other hand, the
parameters of the H1 filter can be straightforwardly
solved by the Riccati equation or the LMIs [2,3].
In addition, many researches are focused on stochastic
systems, since many randomly occurred phenomena can
be described as the stochastic processes [4–7]. Therefore,
filtering for stochastic systems has become an active

research field in the past two decades [8,9]. In [3],
modified Riccati inequality was presented to solve the
H1 filtering problem and the H1 performance was
guaranteed based on the bounded real lemma. Full and
reduced-order H1 filtering for stochastic linear system
were studied using the LMI method [10,11], respectively.
In [12,13], H1 filtering was extended to the fuzzy sto-
chastic systems. However, little attention has been paid to
robust H1 filtering for networked stochastic systems.

Another active research field in the past decade is the
networked control systems (NCSs), which connect the
systems with the controller or estimator through a com-
munication channel [14]. NCSs become more significant
for its convenience, such as shortening installation period,
facilitating diagnosis and simplifying system maintenance
[15]. The advantages of NCSs attract researchers to
address its applications. In [16], the clustering based
algorithm was used for the heterogeneous wireless sensor
networks to improve the sensor network’s lifetime. In
[17], wireless sensor network based indoor positioning
system was developed according to the rice distribution
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and the maximum likehood positioning algorithms. In [18],
Markov jump system was introduced to analyze the
stability of the teleopration system with transmission
delay and packet dropouts. However, the capacity limit
and the unreliable properties of the communication
channel make the NCSs challenging. One of the interesting
issue is how to compensate the packet dropouts caused
by two factors [19–22]. One is the node failure or the data
collision, which leads to the direct packet dropouts; the
other is the long delay, i.e. the data will be abandoned
once the delay exceeds a fixed value. Stochastic processes
are effective models to describe the packet dropouts and
one of the stochastic models is Bernoulli process, which
was first proposed in [23]. The Bernoulli process was
applied in the imperfect measurement fields of covariance
analysis for Kalman filter [24], performance analysis for
the H1 filter and LQG control design for the unstable
systems [25]. To capture the possible temporal correlation
of the channel variation, two states homogeneous Markov
chain was proposed to model the packet dropouts and a
number of significant works have been derived. In [26], a
sufficient bounded condition of the estimation error
covariance was achieved by introducing the peak covar-
iance. By exploiting the system structure, the necessary
and sufficient bounded condition of the Markov based
packet dropouts was derived for some special structure
systems [27]. A full-order H1 filter was designed for the
NCS with Markov packet dropouts, and a necessary and
sufficient condition was constructed to guarantee the
exponential mean-square stability with H1 performance
of the filtering error systems [28]. What we have to point
out is that how to analyze the Markov chain based packet
dropouts is still an interesting and challenge issue for the
stochastic systems [29].

Physical sensors, as an essential part of the NCSs,
inevitably show nonlinear characteristic in one or another
form with environment changing [30]. Neglecting this
nonlinear phenomenon will degrade the system perfor-
mance or even lead the system to be unstable, which
draws a great number of attentions from the researchers.
According to LMI techniques, the H1 output feedback
controller was designed in [31] and H1 filtering with
sensor nonlinearity was analyzed in [12]. It is well known
that sensors always distribute in a large area and work
under various conditions. Therefore, the multiple com-
munication channels with different packet dropout rates
can better represent the actual NCSs [32]. Optimal esti-
mator and robust filter for the multiple communication
channels were considered in [33,34], respectively. In [35],
feedback control over multiple fading channels was ana-
lyzed and the capacity of each channel was determined.
However, it is still a challenging issue to study the
influences simultaneously from unreliable communica-
tion channels and sensor nonlinearities.

Motivated by the above discussion, this paper studies the
robust H1 filtering problem for networked stochastic sys-
tems subject to norm bounded uncertainties and packet
dropouts. The considered imperfect measurements contain
randomly occurring sensor nonlinearities and packet drop-
outs, which are modeled by m independent Markov chains
with partially unknown transition probabilities. The main

objective of this paper is to design a full-order filter such
that the filtering error system is exponentially mean-square
stable with a decay rate t�1 and an H1 performance level g.
The solvability condition of the full-order filter is then
expressed in terms of LMIs. Finally, a numerical example is
shown to demonstrate the effectiveness of the proposed
method. The main contributions of the paper can be sum-
marized as follows: (1) A novel imperfect measurement
model is proposed, where sensor nonlinearities and packet
dropouts are contained, which can better reflect the actual
conditions; (2) m independent Markov chains with partially
unknown probabilities are introduced to describe the random
cases of each measurement, which can deal with some harsh
conditions that the information of the transition probabilities
are hard to be obtained; (3) a one to one mapping is proposed
to map the m independent Markov chains to an augmented
one for facilitating the resultant system analysis.

This paper is organized as follows: The model of the
filtering error system with imperfect measurements is
proposed in Section 2, where the sensor nonlinearities and
packet dropouts are described in a unified form via Markov
chains, and an augmented Markov chain is presented based
on a one to one map. In Section 3, the exponential mean-
square stability with a decay rate t�1 and an H1 perfor-
mance level g is analyzed. Then, the parameters of the filter
are solved by LMIs methods in Section 4. A numerical
example is presented in Section 5. Section 6 draws the
conclusions and proposes the future work.

Notations: Throughout this paper, R stands for real
numbers and N for nonnegative integers. Rn and Rn�m

denote, respectively, the n-dimensional Euclidean space
and the set of all n�m real matrices. The superscript MT

denotes the transposition of M. rminðMÞ and rmaxðMÞ stand
for the minimum and the maximum eigenvalues of matrix
M, respectively. diag½�� stands for a diagonal matrix. For
the vector x 2 Rn, JxJ29xT x. PðxðtÞÞ denotes the prob-
ability of xðtÞ. For notation ðO,F ,PÞ, O stands for the
sample space, F is the s-algebra of subsets of the sample
space and P is the probability measure on F . EðxðtÞÞ
defines the expectation of xðtÞ. The notation XZY

(X4Y), where X and Y are symmetric matrices, means
that X�Y is positive semidefinite (positive definite).
l2½0,1Þ is the space of square summable infinite sequence.
n denotes the term that is induced by symmetry.

2. Problem formulation

2.1. System description

Consider the following discrete-time linear system:

xðkþ1Þ ¼ ðAþDAðkÞÞxðkÞþðBþDBðkÞÞmðkÞ

þ½ðEþDEðkÞÞxðkÞþðGþDGðkÞÞmðkÞ�oðkÞ,
zðkÞ ¼ LxðkÞ, k 2 N

8><
>: ð1Þ

and m measurements with randomly occurring sensor
nonlinearities and packet dropouts are described as
follows:

yiðkÞ ¼ aiðkÞfiðCixðkÞÞþbiðkÞCixðkÞþDimðkÞ, ð2Þ

where xðkÞ 2 Rn, yiðkÞ 2 R, and zðkÞ 2 Rq are the state,
measurement received from sensor i and the signal to be
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