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In this paper, we introduce a fast computational frequency-domain approach for

designing complementary sets of sequences. Following the basic idea of CAN-based

algorithms, we propose an extension of the CAN algorithm to complementary sets of

sequences (which we call CANARY). Moreover, modified versions of the proposed

algorithm are derived to tackle the complementary set design problems in which low

peak-to-average-power ratio (PAR), unimodular or phase-quantized sequences are of

interest. Several numerical examples are provided to show the performance of CANARY.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

An active sensing device such as a radar system,
transmits suitable waveforms into its surrounding that
enable it to measure useful properties (e.g. location or
speed) of peripheral objects. The transmit waveforms are
generally formulated by using discrete-time sequences
(see e.g. [1]). Let x¼ ðxð1Þ, . . . ,xðNÞÞT represent such a
sequence (to be designed). The aperiodic and, respec-
tively, periodic autocorrelations of x are defined as

rðkÞ ¼
XN�k

l ¼ 1

xðlÞxnðlþkÞ ¼ rnð�kÞ, 0rkr ðN�1Þ, ð1Þ

cðkÞ ¼
XN

l ¼ 1

xðlÞxnðlþkÞmod N ¼ cnð�kÞ, 0rkr ðN�1Þ: ð2Þ

In general, transmit sequences x with small out-of-phase
(i.e. ka0) autocorrelation lags lead to a better

performance of an active sensing system. As a result,
there exists a rich literature on designing such sequences
(see e.g. [1–22] and the references therein).

In order to avoid non-linear side effects and maximize
the efficiency of power consumption at the transmitter,
unimodular sequences (with 9xðlÞ9¼ 1) are desirable.
Moreover, for cases with more strict implementation
demands, phase-quantized unimodular sequences must
be considered. For unimodular sequences it is not possible
to make all f9rðkÞ9g much smaller than r(0) (depending on
the application, the needed ratio can be around 10�5 or
even smaller). For instance, it can be easily observed that
9rðN�1Þ9¼ 1, no matter how we design the sequence x. In
contrast with this, unimodular sequences with zero out-
of-phase (i.e. perfect) periodic autocorrelation can be
obtained for example via construction algorithms [4].
However, even by considering the periodic correlation,
finding phase-quantized unimodular sequences with per-
fect periodic autocorrelation is a hard task. The difficulties
in designing sequences with good autocorrelation encour-
aged the researchers to consider the idea of complemen-
tary sets of sequences (CSS). A set X ¼ fx1,x2, . . . ,xMg
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containing M sequences of length N is called complemen-
tary iff the autocorrelations of fxmg sum up to zero at any
out-of-phase lag, i.e.

XM
m ¼ 1

rmðkÞ ¼ 0, 1r9k9r ðN�1Þ, ð3Þ

where rm(k) represents the kth autocorrelation lag of xm.
Consequently, to measure the complementarity of a
sequence set fxmg one can consider the integrated side-
lobe level (ISL) or the peak sidelobe level (PSL) metrics
defined by

ISL¼
XN�1

k ¼ 1

XM
m ¼ 1

rmðkÞ

�����
�����
2

,

PSL¼max
k

XM
m ¼ 1

rmðkÞ

�����
�����

( )
, ð4Þ

as well as the ISL-related merit factor (MF), i.e.

MF¼ E2=ð2ISLÞ, ð5Þ

where E denotes the sum of the energy of the sequences.
Complementary sets containing M¼2 sequences, which
are known as complementary pairs, form a special case of
CSS. Complementary pairs with binary (i.e. 71) elements
were first studied in [5] and are usually referred to as
Golay pairs (GP).

CSS have been applied to radar pulse compression [7],
multiple-input–multiple-output (MIMO) radars [8], ultra-
sonic ranging [9], synthetic aperture imaging [10], and
ultrasonography [11]. In addition to active sensing sys-
tems, CSS have applications in code-division multiple-
access (CDMA) communication schemes [12], ultra wide-
band (UWB) communications [13], orthogonal frequency-
division multiplexing (OFDM) [14,15], channel estimation
[16], and data hiding [17]. Due to such a wide range of
applications, the construction of CSS has been an active
area of research during the last decades. The majority of
research results on CSS have been concerned with the
analytical construction of GP or CSS for restricted
sequence lengths N. For example, it is shown in [18] that
GPs exist for lengths of the form N¼ 2a10b26g where a,b
and g are non-negative integers. Some conditions on
the existence of CSS can be found in [19] and [20].
Furthermore, Ref. [20] considers the extension of GP to
general CSS. A theoretical as well as computational
investigation of feasible GPs of lengths No100 is accom-
plished in [21].

In contrast to analytical constructions, a computa-
tional design of CSS does not impose any restriction on
the sequence length N or the set cardinality M. Further-
more, a computational algorithm for designing CSS can
provide plenty of CSS without the need for user-tuned
parameters of analytical constructions. Such algorithms
can also be used to find almost (i.e. sub-optimal) com-
plementary sets of sequences for (N,M) values for which
no CSS exists. A computational algorithm (called ITROX)
for designing CSS was introduced in [9]. In this paper, we
propose an extension of the CAN algorithm [23] for
designing complementary sets of sequences (which we
call CANARY). The proposed algorithm works in the

frequency domain, and is generally faster than ITROX.
This is due to the fact that ITROX is based on certain
eigenvalue decompositions with OðMN2

Þ complexity,
whereas CANARY relies on fast Fourier transform
(FFT) operations with OðMN logðNÞÞ complexity (the
difference in computational burdens between the two
algorithms can be clearly observed in practice when N

grows large).
The rest of this work is organized as follows. Section 2

presents the CANARY algorithm for CSS design. The
extension of the CANARY algorithm to phase-quantized
(and other constrained) CSS is studied in Section 3.
Section 4 is devoted to numerical examples, whereas
Section 5 concludes the paper.

Notation: We use bold lowercase letters for vectors and
bold uppercase letters for matrices. ð:ÞT , ð:Þn and ð:ÞH

denote the vector/matrix transpose, the complex conju-
gate, and the Hermitian transpose, respectively. 1 and 0
are the all-one and all-zero vectors/matrices, respectively.
JxJn or the ln-norm of the vector x is defined as
ð
P

k9xðkÞ9
n
Þ
1=n where fxðkÞg are the entries of x. The

Frobenius norm of a matrix X (denoted by JXJF) with
entries fXðk,lÞg is equal to ð

P
k,l9Xðk,lÞ92

Þ
1
2, whereas the

l1-norm of X (denoted as JXJ1) is given by
P

k,l9Xðk,lÞ9. The
matrix ejX is defined element-wisely as ½ejX �k,l ¼ ej½X�k,l .
argð:Þ denotes the phase angle (in radians) of the vector/
matrix argument. The symbol � stands for the Hadamard
(element-wise) product of matrices. C represents the set
of complex numbers. Finally, dk is the Kronecker delta
function which is equal to one when k¼0 and to zero
otherwise.

2. CANARY

It is well-known that for any sequence x of length N

with aperiodic autocorrelation lags frðkÞg (see e.g. [24])

FðoÞ9
XN

n ¼ 1

xðnÞe�jon

�����
�����
2

¼
XN�1

k ¼ �ðN�1Þ

rðkÞe�jok ð6Þ

where FðoÞ is the ‘‘spectrum’’ of x. Consider a comple-
mentary set X ¼ fx1,x2, . . . ,xMg containing M sequences of
length N. It follows from the Parseval equality that

2ISL¼
XN�1

k ¼ �ðN�1Þ

XM
m ¼ 1

rmðkÞ�MNdk

�����
�����
2

¼
1

2N

X2N

p ¼ 1

XM
m ¼ 1

FmðopÞ�MN

" #2

ð7Þ

with FmðopÞ representing the spectrum of the mth
sequence at the angular frequency op ¼ 2pp=ð2NÞ. There-
fore, the minimization of the ISL metric in (4) can be
accomplished by minimizing the following frequency-
domain metric:

X2N

p ¼ 1

XM
m ¼ 1

XN

n ¼ 1

xmðnÞe
�jopn

�����
�����
2

�MN

2
4

3
52

: ð8Þ

Inspired by the basic idea of the CAN algorithm in [23]
that considers (8) with M¼1, we propose a cyclic
algorithm (which we call CANARY) for designing CSS.
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