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a b s t r a c t

We propose a conjugate gradient type optimization technique for the computation of

the Karcher mean on the set of complex linear subspaces of fixed dimension, modeled

by the so-called Grassmannian. The identification of the Grassmannian with Hermitian

projection matrices allows an accessible introduction of the geometric concepts

required for an intrinsic conjugate gradient method. In particular, proper definitions

of geodesics, parallel transport, and the Riemannian gradient of the Karcher mean

function are presented. We provide an efficient step-size selection for the special case of

one dimensional complex subspaces and illustrate how the method can be employed

for blind identification via numerical experiments.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In a wide range of signal processing applications and
methods, subspaces of a fixed dimension play an impor-
tant role. Signal and noise subspaces of covariance
matrices are well studied objects in classical applications,
such as subspace tracking [1] or direction of arrival
estimation [2]. More recently, a significant amount of work
is focussed on applying subspace based methods to image
and video analysis [3], as well as to matrix completion
problems [4]. One fundamental challenge amongst these
works is the study of the statistical properties of distributions
of subspaces. Specifically, in the present work, we are
interested in computing the mean of a set of subspaces of
equal dimension via averaging.

The averaging process, considered in this paper,
employs the intrinsic geometric structure of the under-
lying set and is also known as the computation of the
Karcher mean (in differential geometry, [5]), Fréchet mean
or barycentre (statistics), geometric mean (linear algebra

and matrix analysis), or center of mass (physics). General
concepts of a geometric mean have been extensively
studied from both theoretical and practical points of view.
To mention just a few, they include probability theory and
shape spaces [6,7], imaging [8], linear algebra and matrix
analysis [9], interpolation [10], and convex and differential
geometry [11,12].

An appropriate mathematical framework is given by
the so-called Grassmannian, which assigns a differenti-
able manifold structure to the set of subspaces of equal
dimension. Usually, this is achieved by identification with
a matrix quotient space.1 In this work, we do not follow
such an approach. By following [14] instead, we identify
the set of subspaces of equal dimension with a set of
matrices. More precisely, we consider the set of Hermitian
projectors of fixed rank, which inherits its differentiable
structure from the surrounding vector space of Hermitian
matrices. In contrast to [14], we consider the complex
case here. The identification of the complex Grassmannian
with Hermitian projection matrices allows an accessible
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kleinsteuber@tum.de (M. Kleinsteuber), hao.shen@tum.de (H. Shen).

URL: http://www.gol.ei.tum.de (M. Kleinsteuber).

1 The set of m-dimensional subspaces of Cn is identified with

Cn�m
n

=GLðmÞ, cf. [13], Cn�m
n

is the set of full rank ðn�mÞ-matrices, and

GL(m) are the complex invertible ðm�mÞ-matrices. The equivalence

relation is defined by X � Y3X ¼ gY for some g 2 GLðmÞ.
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introduction of the geometric concepts such as geodesics,
parallel transport, and the Riemannian gradient of the
Karcher mean function.

In general, computing the Karcher mean on a smooth
manifold involves a process of optimization, which by its
own is of both theoretical and practical interest. Various
numerical methods have been developed on the Grass-
mannian, such as a direct method [15], gradient descent
algorithms [13], Newton’s method [14], and conjugate
gradient methods [16,17].

In this work, we focus on the development of conjugate
gradient methods. These methods have been proven to be
efficient in many applications due to their trade-off between
computational complexity and excellent convergence pro-
perties. In particular, we propose an efficient step-size
selection for the interesting case where the Grassmannian
is equal to the complex projective space. Moreover, we
outline how the developed method can be employed for
blind identification.

The paper is organized as follows. Section 2 recalls
some basic concepts in differential geometry, which make
the present work intuitive and self-contained. An abstract
framework of conjugate gradient methods on smooth
manifolds is given in Section 3. In Section 4, the geometry
of the Grassmannian is presented, followed by a detailed
analysis of the of the Karcher mean function in Section 5.
A geometric CG algorithm is given in Section 6 for the
computation of the Karcher mean on the Grassmannian
in general, together with a particularly efficient step-size
selection for the special case of the complex projec-
tive space. In Section 7, we outline how the proposed
approach of averaging subspaces is evidenced to be
useful in blind identification and a conclusion is drawn
in Section 8.

2. Differential geometric concepts

In this section, we shortly recall and explain the differ-
ential geometric concepts that are needed for this work. We
refer to [19] for a detailed insight into differential and
Riemannian geometry and for the formal definitions of the
mathematical objects, and to [13] for an introduction of the
topic with a focus on matrix manifolds.

Strictly speaking, a manifold M is a topological space that
can locally be continuously mapped to some linear
space, where this map has a continuous inverse. These
maps are called charts, and since charts are invertible,
we can consider the change of two charts around any
point in M as a local map from the linear space into
itself. M is a differentiable or smooth manifold, if these
maps are smooth for all points in M. Many data sets
considered in signal processing are subsets of such a
manifold. Important examples are matrix groups, the
set of subspaces of fixed dimension, the set of matrices
with orthonormal columns (so-called Stiefel manifold),
the set of positive definite matrices, etc.

To every point x in the smooth manifold M one can
assign a tangent space, consisting of all velocities of
smooth curves in M that pass x. Formally, we define

TxM :¼ f _axð0Þ9aðtÞ � M,axð0Þ ¼ xg: ð1Þ

Intuitively, TxM contains all possible directions in which
one can tangentially pass through x. The elements of TxM

are called tangent vectors at x.
A Riemannian manifold M is a smooth manifold with a

scalar product gxð�,�Þ assigned to each tangent space TxM

that varies smoothly with x, the so-called Riemannian

metric. We drop the subscript x if it is clear from the
context which tangent space g refers to. The correspond-
ing norm will be denoted by J � Jg . The Riemannian metric
allows to measure the distance on the manifold. As a
natural extension of a straight line in the Euclidean space,
a geodesic is defined to be a smooth curve in M that
connects two sufficiently close points with shortest
length. The length of a smooth curve a : ða,bÞ-M on a
Riemannian manifold is defined as

LðaÞ ¼
Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gaðtÞð _aðtÞ, _aðtÞÞ

q
dt: ð2Þ

In Euclidean space, two velocities at different locations
are both vectors in this space. This allows to form linear
combinations and scalar products of these vectors. In the
manifold setting, however, this is not possible, since these
velocities are elements in different (tangent) spaces. We
hence need a way to identify tangent vectors at x 2 M

with tangent vectors at y 2 M if xay. To that end, we
assume that there is a unique geodesic in M that connects
x and y, say gðtÞ, with gð0Þ ¼ x and gðtÞ ¼ y, being possible
if x,y are not too far apart. The parallel transport along gðtÞ
admits one way of identifying TxM with TyM. A rigorous
definition is beyond the scope of this work, but loosely
speaking, the transportation is done in such a way that
during the transportation process, there is no intrinsic
rotation of the transported vector. In particular, this
leaves the scalar product between the transported vector
and the velocity of the curve invariant.

Certainly, such an identification of tangent vectors
depends on the geodesic. Consider for example a sphere
with two different geodesics connecting the south with
the north pole (i.e. two meridians) that leave the south
pole by an angle of p=2. Parallel transporting the same
vector along both meridians from the south pole to the
north will result in two antiparallel vectors at the north
pole. Note that the identification of different tangent
spaces via parallel transport along a geodesic is just one

particular instance of a more general concept termed
vector transport in [13].

In order to minimize a real valued function on M, we
have to extend the notion of a gradient to the Riemannian
manifold setting. To that end, recall that if f : Rn-R is
smooth in x, there is a unique vector G(x) such that

d

dt
f ðxþtHÞ9t ¼ 0 ¼ GðxÞTH ¼: /GðxÞ,HSEuclid for all H2 Rn,

ð3Þ

where ð�ÞT denotes transpose. Typically, we write rf ðxÞ :¼

GðxÞ and call it the gradient of f at x. This coordinate free
definition of a gradient can be straightforwardly adapted to
the manifold case. Let

f : M-R ð4Þ
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