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a b s t r a c t

This paper is concerned with Bayesian optimal filtering and smoothing of non-linear

continuous-discrete state space models, where the state dynamics are modeled with

non-linear Itô-type stochastic differential equations, and measurements are obtained at

discrete time instants from a non-linear measurement model with Gaussian noise. We

first show how the recently developed sigma-point approximations as well as the

multi-dimensional Gauss–Hermite quadrature and cubature approximations can be

applied to classical continuous-discrete Gaussian filtering. We then derive two types of

new Gaussian approximation based smoothers for continuous-discrete models and

apply the numerical methods to the smoothers. We also show how the latter smoother

can be efficiently implemented by including one additional cross-covariance differential

equation to the filter prediction step. The performance of the methods is tested in a

simulated application.

& 2012 Published by Elsevier B.V.

1. Introduction

Non-linear continuous-discrete optimal filtering and
smoothing refer to applications of Bayesian inference to state
estimation in dynamic systems, where the time behavior of
the system is modeled as a non-linear stochastic differential
equation (SDE), and noise-corrupted observations of the state
are obtained from a non-linear measurement model. These
kinds of continuous-discrete state estimation problems arise
in many applications, such as, in guidance systems, inte-
grated inertial navigation and passive sensor based target
tracking [1–3]. Solving these estimation problems is very
hard, because the SDEs appearing in the dynamic model or
the corresponding Fokker–Planck–Kolmogorov partial differ-
ential equations cannot typically be solved analytically and

approximations must be used. Here we consider the parti-
cularly difficult case of non-additive noise which is intract-
able to many existing methods in the field (cf. [4,5]).

In this paper, we show how the numerical integration
based discrete-time Gaussian filtering and smoothing frame-
works presented in [6–8] can be applied to continuous-
discrete models. We first show how the recent numerical
integration methods can be applied to the classical
continuous-discrete Gaussian filtering framework [9]. The
usage of cubature integration method in continuous-discrete
filtering was also recently analyzed by Särkkä and Solin [5],
and here we generalize those results. The main contributions
of this paper are to derive new continuous-discrete Gaussian
smoothers by using two different methods: (i) by forming a
Gaussian approximation to the partial differential equations
of the smoothing solution [10,11] and (ii) by computing the
continuous limit of the discrete-time Gaussian smoother [8]
as in [12]. Both of these smoothers consist of differential
equations for the smoother mean and covariance. The third
main contribution is to derive a novel computationally
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efficient smoothing method which only requires forward
integration of one additional matrix differential equation
during the prediction step of the continuous-discrete
filter.

1.1. Problem formulation

This paper is concerned with Bayesian optimal filtering

and smoothing of non-linear continuous-discrete state
space models [1] of the following form:

dx¼ f ðx,tÞ dtþLðx,tÞ db,

yk ¼ hkðxðtkÞ,rkÞ, ð1Þ

where xðtÞ 2 Rn is the state and yk 2 R
d is the measure-

ment at time instant tk. The functions f ðx,tÞ and hkðx,rÞ
define the dynamic and measurement models, respec-
tively. Here fbðtÞ : tZ0g is a s-dimensional Brownian
motion with diffusion matrix Q(t) and frk : k¼ 1,2, . . .g is
a Gaussian Nð0,RkÞ white random sequence. The processes
bðtÞ and rk as well as the random initial conditions
xð0Þ �Nðm0,P0Þ are assumed to be mutually independent.
Lðx,tÞ is a matrix valued function which causes the
effective diffusion matrix of the process noise to be

Sðx,tÞ ¼ Lðx,tÞQ ðtÞLT
ðx,tÞ, ð2Þ

and is thus allowed to be state-dependent. In this paper,
we interpret the stochastic differential equations (SDE) as
Itô-type stochastic differential equations (see, e.g., [13]).

In continuous-discrete filtering, the purpose is to com-
pute the following filtering distributions which are defined
for all tZ0, not only for the discrete measurement steps:

pðxðtÞ9 y1, . . . ,ykÞ, t 2 ½tk,tkþ1Þ, k¼ 1,2, . . . ð3Þ

The Bayesian optimal continuous-discrete filter [14,1,9] is
actually almost the same as the discrete filter—only the
prediction step is replaced with solving of the Fokker–

Planck–Kolmogorov (FPK) partial differential equation.
In continuous-discrete smoothing we are interested in

computing smoothing distributions of the form

pðxðtÞ9y1, . . . ,yK Þ, t 2 ½t0,tK �: ð4Þ

The formal Bayesian filtering and smoothing solutions to
the state estimation problem – including the continuous-
discrete special case – have already been around since the
1960s–1970s [15,1,10,11,16] and are in that sense well
known. However, the only way to solve the formal
Bayesian filtering and smoothing equations is by approx-
imation, as the closed-form solution is available only for
the linear Gaussian case [17–19] and for a few other
isolated special cases (see, e.g., [20]). Although non-linear
continuous-discrete optimal filtering and smoothing are
mature subjects, the approximations have concentrated
to Taylor series based methods [21–23,16,9] and other
methods have received considerably less attention.

During the last few decades, the speed of computers
has increased exponentially, and due to that, numerical
integration methods and other computational methods
have developed rapidly. Thus more accurate approxima-
tions to the formal filtering and smoothing equations are
tractable than before. In particular, the sigma-point based
unscented transform was introduced as an alternative to

Taylor series approximations for discrete-time filters and
estimators in [24–26] and the extension to smoothing
problems was presented in [27]. The idea was extended to
a full numerical integration based discrete-time Gaussian
filtering and smoothing framework in [6–8]. Note that the
Gaussian approximations themselves date back to the
1960s–1980s [28,1,9], but the contributions of the recent
articles are in application of more general numerical
integration methods to the problem.

Non-linear continuous and continuous-discrete smooth-
ing has been more recently studied in [29,30], and applica-
tions of the unscented (sigma-point) transform and
related approximations to continuous-discrete (and
continuous-time) filtering and smoothing have been
proposed in [30–32,12]. The extension of the cubature
Kalman filter [33] to continuous-discrete filtering pro-
blems – using Itô–Taylor series based approximations –
has also been recently studied in [4], and its relation-
ship to the classical approach to continuous-discrete
filtering was analyzed in [5].

In this paper we only consider Gaussian approxima-
tions, but obviously other approximations exist as well.
One possible approach is to use MCMC (Markov chain
Monte Carlo) based methods for sampling from the state
posterior (see, e.g., [34–36]). It is also possible to use
simulation (sequential Monte Carlo) based particle filter-
ing and smoothing methods (see, e.g., [37,38]) or approx-
imate the solution of the Fokker–Planck–Kolmogorov
equation numerically (see, e.g., [39,40]). Although these
methods are more accurate in some cases, they typically
are computationally more demanding than Gaussian
approximations.

2. Continuous-discrete gaussian filtering

2.1. Gaussian filter for the continuous-discrete problem

In the filtering algorithms presented in this paper, we
use the classical Gaussian filtering [1,9,6,7] approach
where the idea is to employ the approximation

pðxðtÞ9y1, . . . ,ykÞ �NðxðtÞ9mðtÞ,PðtÞÞ: ð5Þ

That is, we replace the true expectations with respect to
x(t) with expectations over the Gaussian approximation.
The means m(t) and covariances P(t) are computed via the
following algorithm:

1. Prediction step: Integrate the following mean and
covariance differential equations starting from the mean
mðtk�1Þ and covariance Pðtk�1Þ on the previous update
time, to the time tk

dm

dt
¼ E½f ðx,tÞ�,

dP

dt
¼ E½ðx�mÞf T

ðx,tÞ�þE½f ðx,tÞðx�mÞT �þE½Sðx,tÞ�, ð6Þ

where E½�� denotes the expectation with respect to
x�Nðm,PÞ. The results of the prediction are denoted as
mðt�k Þ, Pðt�k Þ, where the minus at superscript means
‘infinitesimally before the time tk’.
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