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a b s t r a c t

In this paper, we tackle the two-dimensional (2-D) parameter estimation problem for a

sum of KZ2 real/complex damped sinusoids in additive white Gaussian noise.

According to the rank-property of the 2-D noise-free data matrix, the damping factor

and frequency information is contained in the dominant left and right singular vectors.

Using the sinusoidal linear prediction property of these vectors, the frequencies and

damping factors of the first dimension are first estimated. The parameters of the second

dimension are then computed such that frequency pairing is automatically achieved.

Computer simulations are included to compare the proposed approach with several

conventional 2-D estimators in terms of mean square error performance and computa-

tional complexity.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The problem of parameter estimation for KZ1 2-D
noisy sinusoids has received a great deal of attention. It is
because in many applications such as source localization
[1,2], radar imaging [3], vibrational analysis of circularly
shaped objects [4], nuclear magnetic resonance (NMR) spec-
troscopy [5], wireless communication channel estimation [6],
the corresponding signals can be well described by the 2-D
sinusoidal model.

2-D Fourier transform is the direct nonparametric
approach to address 2-D spectral estimation. In spite of
its computational attractiveness when using fast Fourier
transform, it suffers from poor resolution in resolving
closely spaced frequencies and high-sidelobe effects [7,8].
In order to achieve higher resolution, the parametric
approach, which assumes that the signal satisfies a gen-
erating model with known functional form, is a standard
choice. Well known 2-D parametric solutions include

maximum likelihood (ML) method [9] and subspace-
based estimators such as multiple signal classification
(MUSIC) [2,3,5], matrix enhancement and matrix pencil
(MEMP) [10] and estimation of signal parameters via
rotational invariance techniques (ESPRIT) [4,6,11–13]. In
the presence of additive white Gaussian noise, the ML
scheme [9], which corresponds to a multi-dimensional
peak search, can produce optimum estimation perfor-
mance, that is, its mean square error (MSE) attains
Cramér–Rao lower bound (CRLB). Comparing with the
ML estimator, the subspace methodology whose under-
lying principle is to separate the received data into signal
and noise subspaces via eigenvalue decomposition (EVD)
or singular value decomposition (SVD), is more computa-
tionally efficient at the expense of suboptimality. The
MUSIC algorithm [3] requires to find the K peaks in a 2-D
cost function constructed from the noise eigenvectors. By
constructing a Hankel-block-Hankel matrix whose size is
larger than that of the data matrix, the MEMP method
[10] decomposes the 2-D estimation problem into two
1-D problems related to each dimension, where general-
ized EVD and 2-D frequency pairing are needed. The
ESPRIT algorithm [11] is similar to [10] in the sense that
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the Hankel-block-Hankel matrix is exploited but it pro-
vides auto-pairing of the 2-D frequencies by making use
of joint diagonalization and can deal with damped sinu-
soids. While [4], which addresses X-texture modes, that
is, real-valued 2-D sinusoids with damping only in one
dimension, can be considered as a modification to [11] by
applying partial forward–backward averaging.

In this paper, we contribute to accurate and fast 2-D
parameter estimation of multiple complex/real damped
sinusoids based on the subspace methodology. We refer
our approach to as principal-singular-vector utilization for
modal analysis (PUMA), meaning that the principal singular
vectors of the data matrix are effectively exploited in the
estimation process. This work is a follow-up of [14] where
the PUMA algorithm for a single damped/undamped real/
complex tone or K¼1 is devised and analyzed. The key ideas
in [14] are to make use of the rank-one property of the
corresponding 2-D noise-free data matrix and find the
damping factor as well as frequency parameters for each
dimension from the left and right principal singular vectors
in a separable manner. In this paper, we extend [14] to the
general case of KZ2 which is not a straightforward task. In
particular, the damping factors and frequencies in each
dimension are not directly related to the K principal singular
vectors and 2-D parameter pairing needs to be addressed.

The rest of the paper is organized as follows. The
algorithm development for multiple damped cisoids is
provided in Section 2. According to the rank-K property of
the 2-D noise-free data matrix, the corresponding left and
right dominant singular vectors are characterized by the
damping factors and frequencies in the first and second
dimension, respectively. Making use of the dominant
singular vectors, the parameters of interest at one dimen-
sion will first be accurately estimated according to an
iterative procedure which utilizes the sinusoidal linear
prediction (LP) property and weighted least squares
(WLS). The damping factors and frequencies in another
dimension are solved via another similar iterative algo-
rithm such that pairing of the 2-D parameters is auto-
matically achieved. Estimation for real tones is addressed
in Section 3. In Section 4, simulation results are included
to evaluate the performance of the PUMA approach by

comparing with the ML [9] and ESPRIT algorithms [4,11] as
well as CRLB. Finally, conclusions are drawn in Section 5.
A list of mathematical symbols that are used in the paper is
given in Table 1.

2. Estimation for complex sinusoids

In this section, we first devise the PUMA algorithm for
estimating the parameters of multiple damped cisoids in
additive noise. The signal model is

rm,n ¼ sm,nþqm,n, m¼ 1;2, . . . ,M, n¼ 1;2, . . . ,N ð1Þ

where

sm,n ¼
XK

k ¼ 1

gkam
k b

n
k expfjðmkmþnknÞg ð2Þ

is the noise-free signal. The gk is the complex amplitude,
mk 2 ð�p,pÞ and ak40 are the frequency and damping
factor in the first dimension while nk 2 ð�p,pÞ and bk40
are the corresponding parameters in the second dimen-
sion, of the kth cisoid. The number of damped cisoids,
namely, KZ2, is assumed known. Here we consider that
the frequencies are distinct for at least one dimension.
Without loss of generality, we assume that MZN4K

and all frequencies in the first dimension are not
identical, that is, mkaml, kal. The additive noises fqm,ng

are uncorrelated zero-mean complex white Gaussian
processes with unknown variances s2

q . The task is to
find fmkg, fnkg, fakg, fbkg and fgkg, from the MN samples of
frm,ng.

We first express (1) and (2) in matrix form as

R¼ SþQ ð3Þ

where ½R�m,n ¼ rm,n, ½S�m,n ¼ sm,n and ½Q �m,n ¼ qm,n. Consid-
ering sm,n as a sum of K components of ðak exp fjmkgÞ

m

gkðbk exp fjnkgÞ
n, k¼ 1;2, . . . ,K , it is easy to see that S can

be factorized as

S¼GCHT
ð4Þ

where G¼ ½g1 g2 � � � gK �, C¼ diagðg1,g2, . . . ,gK Þ, H¼
½h1 h2 � � � hK �, gk ¼ ½ak a2

k � � � a
M
k �

T , hk ¼ ½bk b2
k � � � b

N
k �

T ,

Table 1
List of symbols.

Symbol Meaning

y Pseudoinverse

vec Vectorization operator

� Kronecker product

� Hadamard product

J Khatri–Rao product

Ii i� i identity matrix

0i�j i� j zero matrix

~a Noise-free value of a

â Estimate of a

½a�i ith element of a
½A�i,j (i, j) entry of A

diag(a) Diagonal matrix with vector a as main diagonal

blkdiagðA1 ,A2 , . . . ,AnÞ Block diagonal matrix with its diagonal elements are square matrices of A1 ,A2 , . . . ,An

Toeplitzða,bT
Þ Toeplitz matrix with first column a and first row bT

vec(A) ½aT
1 aT

2 � � � aT
K �

T where A¼ ½a1 a2 � � � aK �
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