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In this paper the stochastic differential equation (SDE) is utilized as a quantitative description of a 
natural phenomenon to distinguish normal and anomalous samples. In this framework, discrete samples 
are modeled as a continuous time-dependent diffusion process with time varying drift and diffusion 
coefficients. We employ a local non-parametric technique using kernel regression and polynomial fitting 
to learn coefficients of stochastic models. Next, a numerical discrete construction of likelihood over 
a sliding window is established using Girsanov’s theorem to calculate an anomalous score for test 
observations. One of the benefits of the method is to estimate the ratio of probability density functions 
(PDFs) through the Girsanov’s theorem instead of evaluating PDFs themselves. Another feature of 
employing SDE model is its generality, in the sense that it includes most of the well-known stochastic 
models. Performance of the new approach in comparison to other methods is demonstrated through 
simulated and real data. For real-world cases, we test our method on detecting anomalies in twitter user 
engagement data and discriminating speech samples from non-speech ones. In both simulated and real 
data, proposed algorithm outperforms other methods.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Anomaly detection has received considerable attention in re-
cent years and refers to the problem of extracting observations or 
patterns that do not behave according to the expected behavior 
of data. In other words, some alternative processes called anoma-
lies cause deviation of system behavior from the normal situation. 
Many methods have been proposed for solving the anomaly de-
tection problem which have employed different techniques such as 
statistical, classification and clustering, neural network, informa-
tion and spectral theoretic based algorithms. Some applications of 
the anomaly detection are presented in medical and public health, 
industrial process monitoring, abrupt changes and irregular vision 
motion detection. Various authors have studied the anomaly de-
tection problem quite extensively; complete surveys on these tech-
niques and applications could be found in [1] and the papers cited 
therein.

Among different anomaly detection methods, statistical tech-
niques have a vast importance in finding discordant observations 
in complex systems. Stochastic fluctuations in complex systems 
change the anomaly detection problem to a challenging task. Sta-
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tistical anomaly detection methods in stochastic dynamics rely on 
fitting a parametric or non-parametric model or distribution to 
normal observations and extracting the nominal behavior of the 
system, then employing a statistical inference test to detect obser-
vations that do not belong to this model. Most studies have inves-
tigated a known underlying model, namely autoregressive (AR) [2], 
autoregressive conditional heteroscedasticity (AR-ARCH) [3], gener-
alized autoregressive conditional heteroscedasticity (GARCH) [4].

The main drawback in these techniques is that the performance 
of such techniques is highly dependent upon the choice of the 
distribution or model that the data is generated from. The perfor-
mance of the method will be poor if the model is under-specified, 
this means the true data generation model is more complex than 
the model used in the anomaly detection technique. This problem 
is even more challenging when non-linearity and non-Gaussianity 
are considered, so in practice a more flexible model is required.

To overcome these problems, we introduce a new application 
of stochastic differential equation in anomaly detection; which is 
modeling system dynamic uncertainty by a global and more flex-
ible model that relies on milder assumptions in comparison with 
other parametric models. Our key idea is based on the fact that 
all statistical information of a time series could be achieved from 
its PDF while PDF estimation without a specific model assumption 
is known to be a hard problem [5]. Since the PDF of a process 
can be represented by a partial differential equation known as 
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the Fokker Planck equation whose parameters are equivalent to its 
corresponding SDE [6–9], therefore, time series inference through 
SDE and PDF are analogous approaches. On the other hand, SDE 
is a continuous model which is measured at discrete instances of 
time so it is a continuous-discrete model, hence, it inherently as-
similates the irregular space sampling in the formulation of the 
model which is not attained in other popular models. We note 
that continuous processes could encompass discretized processes 
as their subset, hence, it is more convenient to model the un-
derlying processes in the continuous domain. In other words, this 
filtering model is a generalization of discrete time series models; 
many discrete time stochastic models can be interpreted as a SDE 
being sampled at discrete time; for example popular models such 
as AR, ARMA, ARCH and GARCH, are extensions of a particular type 
of stochastic differential equation [6,9–12].

In this paper, we propose a new algorithm employing SDE mod-
els to detect anomalies in stochastic processes. By the assumption 
that we have a training dataset that describes the normal opera-
tion of the system, we specify whether there exists an anomaly in 
the test data. This procedure consists of the following stages:

First we apply local polynomial kernel regression to estimate 
SDE coefficients. The conventional non-parametric parameter es-
timation method [8] is a batch algorithm where all samples are 
needed for estimating PDF and it also requires too many data sam-
ples. Beside this, for the non-stationary time series an ensemble of 
experimental realizations of process is necessary which is not gen-
erally available. Another method for short and non-stationary data 
is introduced in [13] based on some assumptions that may not be 
practically valid. Accordingly, we use an extension of the frame-
work in [14] by utilizing polynomial fitting to obtain a closed form 
estimator for SDE coefficients in non-stationary case as well as sta-
tionary one.

Next, we construct the log-likelihood of the model parameters 
over a sliding window using Girsanov’s formula instead of PDF. We 
use the log-likelihood value as an anomaly indicator for making a 
decision about the presence of anomaly in the test data. We would 
note that by using Girsanov’s formula, the log-likelihood score is 
calculated without estimating the PDF of the process, a formidable 
task, since it is hard or impossible to find an explicit expression 
for PDF especially in non-linear time series.

The organization of the paper is as follows. In the next sec-
tion, we briefly review stochastic differential equation modeling. 
Problem formulation from a statistical perspective, relation to SDE 
modeling as well as parameter estimation and log-likelihood cal-
culation are discussed in section 3. Power and performance of this 
procedure is examined through Monte Carlo simulations in sec-
tion 4; its application in twitter user engagement data and voice 
activity detection is also presented in this section. Finally, some 
conclusions are drawn in section 5.

2. Preliminaries

In this section, we represent a brief review of SDE and its pa-
rameter estimation approach.

Stochastic differential equations are equations that model dy-
namic characteristics of complex systems. They simplify quanti-
fying uncertainty of the time series while preserve momentous 
information of them [8]. Stochastic differential equations are in-
herently extensions of ordinary differential equations (ODEs). They 
provide flexibility in choosing the stochastic component and it is 
not restricted to a constant-variance Gaussian process. General rep-
resentation of a continuous Markovian process {Xt = X(t)}t≥0 in 
the form of stochastic differential equation is as follows

dXt = μ(Xt, t)dt + σ(Xt , t)dWt (1)

here {Wt = W (t)}t≥0 is the Wiener process which is the source 
of randomness, μ(·, ·) and σ 2(·, ·) are referred to as the time and 

state dependent drift and diffusion coefficients, respectively. The 
Wiener process is a Gaussian delta-correlated noise with contin-
uous path and vanishing mean. μ(·, ·) presents the deterministic 
component which specifies the nominal dynamics of the system 
and σ 2(·, ·) determines the stochastic dynamics and represents 
how the noise affects the system. In fact, by SDE modeling, we 
separate and quantify deterministic and stochastic dynamics of the 
system.

Note that the diffusion coefficient is formulated by a function 
of time and process Xt and is not a constant while in most sta-
tistical models like autoregressive models, noise is introduced into 
the model by a constant-variance Gaussian process which is addi-
tively superimposed on the trajectory generated by a deterministic 
dynamic. The constant-variance Gaussian noise is not a realistic as-
sumption in practice, especially in complex systems that are com-
posed of many microscopic subsystems and exposed to numerous 
random influences.

(1) results in a solution that is a Markovian, continuous time 
stochastic process which is called a diffusion process. In [6,15] one 
can find sufficient conditions for existence of a solution to (1).

The same information in (1) is contained in the corresponding 
Fokker Planck equation expressing the temporal evolution of prob-
ability density function P (Xt , t) of Xt :

∂ P (Xt, t)

∂t
= − ∂

∂ Xt
μ(Xt , t)P (Xt, t) + 1

2

∂2

∂ X2
t

σ 2(Xt, t)P (Xt, t)

(2)

As mentioned before, one important advantage of a SDE approach 
is based on (2) in which SDE coefficients characterize how the PDF 
evolves over time without getting involved in the high computa-
tional cost of PDF estimation. So, it is more convenient to work 
with the drift and diffusion terms rather than PDF.

There are two techniques for estimating drift and diffusion co-
efficients: parametric and non-parametric. Our discussion is con-
fined to the systems which we do not have exact knowledge about 
the system dynamics in advance. Since the focus in this paper is on 
the non-parametric estimation, for information about parametric 
parameter estimation please refer to [7]. Two well known estima-
tors in finite time step observations for μ(x, t) and σ 2(x, t) are 
described as

μ̂(x, t) = lim
τ→0

1

τ

∫
(Xτ − x)P (Xτ , t + �t|x, t)dXτ

σ̂ 2(x, t) = lim
τ→0

1

2τ

∫
(Xτ − x)2 P (Xτ , t + �t|x, t)dXτ ,

(3)

here μ̂(x, t) and σ̂ 2(x, t) are seen as instantaneous conditional 
mean and variance of the process, respectively [7]. In this approach 
the conditional PDF of observations, denoted by P in (3), is derived 
by histogram.

When τ is not small enough, first drift and diffusion coeffi-
cients are estimated by (3), and then extrapolate to τ = 0. Details 
of implementation are presented in [16].

3. Problem formulation

In this section, we first describe a mathematical representation 
of the problem from statistical point of view, then the proposed 
method is presented.

3.1. Mathematical representation

Let {X1:N} be a sequence of observations from a continuous 
process Xt that are sampled at even or uneven time intervals �it
at {t1, . . . , tN }. The training dataset {X1:k} contains stationary ob-
servations sampled at normal operation of the system. Our goal is 
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