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Compressed sensing (CS) is a new paradigm for acquiring sparse and compressible signals which can
be approximated using much less information than their nominal dimension would suggest. In order
to recover a signal from its compressive measurements, the conventional CS theory seeks the sparsest
signal that agrees with the measurements via a great many algorithms, which usually solve merely
an approximation of the lp norm minimization. In this paper, CS has been considered from a new
perspective. We equivalently transform the lp norm minimization into a concave continuous piecewise
linear programming based on the prior knowledge of sparsity, and propose a novel global optimization
algorithm for it based on a sophisticated detour strategy and the y valid cut theory. Numerical
experiments demonstrate that our algorithm improves the best known number of measurements in the
literature, relaxes the restrictions of the sensing matrix to some extent, and performs robustly in the
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noisy scenarios.
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1. Introduction

Over the years, sparse representation in the signal processing
attracts increasing attention. Signals have sparse coefficients in
some transform domain, such as the wavelet or Fourier, and ex-
ploiting this sparsity offers significant advances in sensing system.
The wisdom behind this is the compressibility of signals: most of
the information contained in a signal resides in a few large coeffi-
cients. Therefore, in traditional applications one can first measure
the entire signal, then merely retains the very small number of
large coefficients. This intuitively raises the question: is it possi-
ble to perform a compact measurement directly on a sparse signal
(measure only a part of the signal)? The fundamental results in
[1-3] answer the above question affirmatively by introducing the
theory of compressed sensing (CS).

CS provides an alternative to Shannon/Nyquist sampling for the
acquisition of sparse or compressible signal that can be well ap-
proximated by just k (« n) components from an n-dimensional
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basis. In this framework one does not measure the n-dimensional
signal directly, but rather inner products with m (<« n) measure-
ment vectors and then recovers the signal via certain reconstruc-
tion algorithms. CS integrates the signal acquisition and compres-
sion steps into a single process. In addition, the ratio m/n is very
small, which offers the potential to simplify the sensing system.
Hence, the implications of these facts are far-reaching, with appli-
cations in single-pixel camera [4], data compression [5], medical
imaging [6], analog-to-digital converters [7,8], sensor networks [9,
10], and so on.

The essential issue in the CS theory is the signal reconstruction.
Although the recovery of the signal from the extremely limited
measurements appears to be a severely ill-posed inverse problem,
the prior knowledge of sparsity gives us solid hope for accurate
reconstruction. Actually, the signal recovery can be achieved by
searching for the sparsest one that agrees with the observed mea-
surements.

Mathematically speaking, under the sparsity and noise-free as-
sumptions, one can recover a k-sparse signal X € R", namely
| X |lo<k (e.g., the coefficient sequence of the signal in an appro-
priate basis), by solving the nonconvex optimization problem

min || x

min | ¥ o "
s.t.  Ax=b,

where || - || denotes the Iy “norm” that counts the number of

nonzero elements, and the sensing matrix A € R™" is usually


http://dx.doi.org/10.1016/j.dsp.2016.03.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:liu-ky12@mails.tsinghua.edu.cn
mailto:xzm13@mails.tsinghua.edu.cn
mailto:xxm10@mails.tsinghua.edu.cn
mailto:swang@mail.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.dsp.2016.03.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2016.03.010&domain=pdf

K. Liu et al. / Digital Signal Processing 54 (2016) 12-26 13

generated by randomly sampling the columns independently from
a certain distribution (e.g., the Gaussian distribution).
Unfortunately, problem (1) is known to be NP-hard and is gen-
erally impossible to be solved, as it usually requires to perform
a combinatorial enumeration of all the feasible sparse situations.
However, fundamental results in [2] show that a computation-
ally tractable optimization problem yields an equivalent solution,
which can be found by solving the basis pursuit (BP) problem

min || x ||
xeR"

2
st. Ax=bh, 2)

as long as A satisfies the restricted isometry property (RIP). Prob-
lem (2) can be viewed as the closest convexification of problem (1)
and is much more approachable, which can be easily solved with
linear programming techniques. Shortly afterwards, a burst of re-
searches in sparse signal reconstruction have been motivated by
BP and RIP. More and more practical and sophisticated algorithms
have been proposed, which can be categorized into the following
five rough groups.

Optimization based algorithms: These approaches solve the con-
vex Or nonconvex programming problems whose minimizer is
known to approximate the target signal. Obviously, aforementioned
BP is of this kind. Kim et al. proposed a specialized interior-point
method for solving [1-regularized least squares problem

min || Ax—b |3+ [ x 1.t > 0, (3)

which uses the preconditioned conjugate gradients algorithm to
compute the search direction [11]. Other developed methods for
problem (3) include the Bregman iterative algorithms [12-14], the
gradient projection method [15], and the shrinkage and subspace
optimization [16]. Candes et al. described a method called iterative
reweighted [; minimization (IRL1) consisting of solving a sequence
of weighted I; minimization problems

min > im1 wilxil @)
s.t.  Ax=Db,

where the weights w1, w3, ---, wp are updated during each itera-
tion based on the previous solution [17]. And this method requires
fewer measurements than /; minimization. Wang and Yin pre-
sented an iterative support detection (ISD) method, which runs as
fast as the best BP algorithms but requires significantly fewer mea-
surements via solving convex truncated BP [18].

It is shown by Chartrand [19] that a nonconvex variant of
BP could produce exact reconstruction with fewer measurements.
Specifically, problem (2) is replaced by the I, minimization,

: p
min X
min x|}

5
s.t.  Ax=Db, )

where || x [[,= (3; 1xi|P)1/P, 0 < p < 1, is the l,-quasi-norm of x.
Then one can adopt a simple computational approach such as
gradient descent with projection to compute local minimizers of
problem (5). This work is extended and refined in the subsequent
years. Chartrand considered the use of iteratively reweighted least
squares (IRLS) approach for the above nonconvex problem [20-23],
and the experiment results suggested that p = 1/2 seems suitable.
Recently, researchers extended problem (5) to the matrix space,
called Mp-minimization [24]. Regarding the nonconvex variants of
BP, besides Lp-norm, log-sum function is also an effective sparsity-
encouraging function which behaves very close to Lo-norm. Iter-
ative reweighted methods and theoretical analysis based on log-
sum minimization were studied in a number of works [25-27].
It should be noted that the nonconvexity of problem (5) means
that all of the algorithms considered here are only designed to

produce local minima. However, these local algorithms may give
global solutions, if initialized by a point sufficiently close to the
global optimum [19].

Iterative greedy algorithms: These methods build up an approx-
imation of the signal by making locally optimal choices at each
step. Gilbert et al. showed the way to incorporate greedy iterative
strategies into fast sparse approximation algorithms and estab-
lish the first rigorous guarantees for greedy methods [28]. Tropp
and Gilbert proved theoretically and empirically that orthogonal
matching pursuit (OMP) is effective for CS [29]. Soon after, faster
algorithms have been proposed, such as stagewise OMP (StOMP)
[30], regularized OMP (ROMP) [31], compressive sampling match-
ing pursuit (CoSaMP) [32], subspace pursuit (SP) [33], iterative
hard thresholding (IHT) [34], accelerated iterative hard threshold-
ing (AIHT) [35] and so on. The major advantages of this kind of
algorithms are their fast speed and their ease of implementation.

Combinatorial algorithms: These methods acquire highly struc-
tured samples of the signal that support rapid reconstruction via
group testing. Cormode and Muthukrishnan presented an approach
of two sets of group tests with different separation properties
that yields the first known polynomial time explicit construction
of a non-adaptive transformation matrix and a reconstruction al-
gorithm [36]. Gilbert et al. exhibited the chaining pursuit (CP)
method which combines sublinear reconstruction time with stable
and robust linear dimension reduction of all compressible signals
[37]. However, simulations reveal that CP works well only when
the signal is extremely sparse. Subsequently, Gilbert et al. pre-
sented heavy hitters on steroids (HHS) pursuit [38]. Unlike CP, HHS
uses separate matrices for estimation, sifting, and noise reduction.

Statistics based algorithms: These methods connect CS to the sta-
tistical inference, which offers the potential for more precise esti-
mation of signal or a reduction in the number of measurements. Ji
et al. considered from a Bayesian perspective and utilized the rele-
vance vector machine (RVM) for signal estimation [39]. Seeger and
Nickisch extended these ideas to Bayesian experimental design and
provided a approximate method based on expectation propagation
[40]. Sarvotham et al. described a specific measurement scheme
using an low density parity check like (LDPC-like) measurement
matrix [41] or a CS-LDPC measurement matrix [42], and employed
belief propagation techniques to accelerate the reconstruction of
approximately sparse signals. The other related methods on appli-
cation of Bayesian framework to sparse inverse problem can be
found in [43] and the references therein.

Structured sparsity algorithms: These methods focus on a special
kind of signals called structured sparsity models, which restrict
the sparsity patterns of the approximations. Stojnic et al. devel-
oped an efficient recovery algorithm of block-sparse signals by
minimizing a mixed [/l norm which can be cast as a convex
second-order cone programming [44] (see also Eldar and Mishali
[45]). Baraniuk et al. introduced a model-based CS theory and pro-
posed the model-based greedy algorithms for the recovery of the
block-sparse signals and the tree structure signals [46-48]. Indyk
and Price initiated a study of the recovery for the tree structure
sparse signals under the Earth-Mover Distance [49]. By reducing
the degrees of freedom of a signal, the structured sparsity models
provide an immediate benefit to CS, which is a reduction in the
number of measurements.

The major selling point for CS is that it uses a limited num-
ber of measurements to recover an entire sparse signal. We list
some measurement requirements (relate to recovering the signal
with high probability) of the aforementioned classic algorithms in
Table 1, from which we can see that, the model-based approach
uses the least number of measurements by requiring the maximal
prior knowledge. In practical applications, one can easily obtain the
prior knowledge about the numbers of nonzeros, but not the loca-
tions of nonzeros. Then a question naturally emerges: whether a
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