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The Least Mean Kurtosis (LMK) algorithm was initially proposed as an adaptive algorithm that is robust 
to the observation noise distribution. Good performances of this algorithm have been shown for non-
Gaussian additive measurement noise. However, the complexity of the algorithm imposes difficulties for 
the development of a reasonably complete theoretical stochastic model for its behavior. The purpose of 
this paper is to contribute to the development of such a model. We study the stochastic behavior of Least 
Mean Kurtosis (LMK) algorithm for Gaussian inputs and for additive noises with even probability density 
functions. Deterministic recursions are derived for the adaptive weight error covariance matrix in a very 
novel manner, leading to a recursive model for the excess mean square error (EMSE) behavior that is 
shown to be accurate for Gaussian, uniform and binary noise distributions. The analysis results are then 
used to compare the performances of LMK with the least mean squares (LMS) and least mean fourth 
(LMF) algorithms under different circumstances.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Stochastic gradient based algorithms are largely employed in 
real-time adaptive filtering for several applications in communica-
tions, control engineering, bioengineering and general signal pro-
cessing [1–4]. The most popular among them is the Least-Mean 
Square (LMS) algorithm. It is very popular due to its simplicity. 
Analytical models are available for predicting its behavior under 
different input conditions, facilitating its design. On the other hand, 
stochastic gradient adaptive algorithms based on higher order mo-
ments of the error signal have been shown to outperform LMS 
in some important applications [5–10]. The practical use of such 
algorithms, however, has been largely restricted due to the lack 
of accurate analytical models to predict their behavior. The Least 
Mean Kurtosis (LMK) algorithm is one of such algorithms.

The LMK algorithm was initially introduced in [11]. The moti-
vation was to obtain an algorithm robust to the noise distribution. 
The LMK algorithm as proposed in [11] seeks to minimize the 
negative of the error signal kurtosis. The kurtosis is related to 
the fourth order cumulant of the error [1]. Now the kurtosis of 
zero-mean Gaussian processes is equal to zero. Thus, a kurtosis-
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based cost function makes LMK algorithm convergence behavior 
independent of the noise statistics if the measurement noise is 
Gaussian [11]. However, if the measurement noise is not Gaussian, 
then the LMK algorithm will respond accordingly and can possi-
bly perform better than an algorithm based on the second order 
statistics of the error. Moreover, given the linearity property of the 
cumulants, the LMK algorithm tends to decouple the costs due to 
the noise and due to the excess estimation error. This property is 
expected to make the algorithm performance more robust to the 
noise distribution and has raised interest in its application [12–21].

Though the desirable properties of the LMK algorithm rely on 
the properties of the kurtosis, its practical implementation is based 
on a stochastic approximation of the gradient of the cost func-
tion and requires a recursive estimation of the conditional mean 
squared estimation error2 [11]. The combination of the stochas-
tic approximation and the recursive estimation of the conditioned 
mean squared error lead to an algorithm whose actual behavior 
can deviate considerably from the kurtosis-based original concept. 
Thus, precise analysis is required to determine the algorithm prop-
erties. Moreover, even if the cost function is inspired by the min-
imization of the kurtosis of the estimation error, practical interest 
and comparison with the performances of other algorithms con-
centrate on the achievable mean squared estimation error. Recent 

2 Conditioned on the adaptive weights.
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Fig. 1. Example comparing LMK and LMS performances for Gaussian input and Gaus-
sian noise. μLMS = 2.2 × 10−5, μLMK = 10−4. LMK converges faster away from the 
optimal solution and slower close to steady-state. Step sizes designed for equivalent 
steady-state results. LMS – black (top) curve, LMK – red (bottom) curve. (For inter-
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

results [22] have shown, under reasonable approximations, that 
the performance surface of the implemented LMK algorithm is in-
deed different from the negative of the error kurtosis, and that the 
minimum of the actual cost function is unique and corresponds 
to the minimum of the mean square error (MSE) performance 
surface (the Wiener solution). The study in [22] has also shown 
that LMK tends to converge faster than LMS far from the opti-
mum, and slower than LMS as their solutions approach the Wiener 
solution. Another important result from [22] is that the actually 
implemented LMK algorithm may outperform LMS even for Gaus-
sian inputs and Gaussian noise. The simulation results shown in 
Fig. 1 illustrate this property for zero-mean white Gaussian input 
with unity variance and zero-mean white Gaussian additive noise 
with variance 10−2. The step sizes μLMS and μLMK were adjusted 
to obtain the same steady-state performance for both algorithms. 
In addition, the computational complexity of both algorithms are 
very similar for high order adaptive filters, as LMK requires 2N + 5
multiplications and N + 3 additions per iteration, while LMS re-
quires 2N + 1 multiplications and N + 1 additions per iteration for 
a filter of length N .

A first analysis of the behavior of the LMK algorithm for Gaus-
sian inputs and any zero-mean white additive noise with even 
probability density function (pdf) was presented in [23]. The con-
ditional mean squared error, appearing in the weight update equa-
tion, is replaced in [23] with a truncated approximation of the 
solution for the recursive equation proposed in [11]. The approx-
imation is accurate for small values of the parameter of the first-
order autoregressive estimate of E[e2(n)], which corresponds to a 
small variance of the estimation error. The resulting model requires 
the determination of three input correlation matrices, namely Ri =
E[X(n)X�(n − i)] for i = 0, 1, 2. In [24], the steady-state perfor-
mance of the algorithm has been studied for symmetrical and 
asymmetrical noise distributions. The study in [24] is restricted to 
white input signals and utilizes the same type of approximation 
used in [23] when estimating the conditional second and third or-
der moments of the estimation error.

This paper presents a new analytical model for the LMK al-
gorithm behavior. The model is derived for Gaussian inputs and 
additive noise with any symmetric pdf as in [23]. Contrary to [23], 
no approximation is used for the recursive update equation of the 
mean squared error estimation. The resulting model is valid for 
any value of the parameter of the autoregressive estimation of the 

Fig. 2. Block diagram of the problem studied.

mean squared error. Moreover, it requires only the knowledge of 
one input correlation matrix.

Simulation results are shown for three distinct noise distribu-
tions (Gaussian, uniform and binary) and for a large set of pa-
rameter values. Comparisons of these results with the performance 
predicted by the derived models illustrate the accuracy of the lat-
ter.

The paper is organized as follows. Section 2 reviews the up-
date equation of the LMK algorithm as proposed in [11]. Section 3
presents the stochastic analysis leading to recursive analytical ex-
pressions for the mean and mean-square behavior of the adaptive 
weights. Section 4 provides some insight into the steady state be-
havior of the algorithm. Section 5 illustrates the accuracy of the 
theoretical model for three noise distributions. Section 6 compares 
the EMSE behaviors of the LMK, LMF and LMS algorithms using 
Monte Carlo simulations. Section 7 discusses slowdown of the LMK 
and LMF algorithms for low noise powers. Section 8 presents the 
conclusions.

2. The LMK algorithm

Fig. 2 shows the block diagram of the problem studied. Vector 
H = [h1, · · · , hN ]� contains the samples of the optimal solution of 
the linear estimation problem. W (n) = [w1(n), · · · , w N(n)]� is the 
weight vector of the adaptive transversal FIR linear estimator, to be 
adapted using the LMK algorithm. The input x(n) is assumed sta-
tionary, zero-mean and Gaussian with variance σ 2

x . X(n) = [x(n),

x(n − 1), · · · , x(n − N + 1)]� is the observed data vector. z(n) is the 
measurement noise, assumed stationary, white, zero-mean, with 
variance σ 2

z , uncorrelated with any other signal and to have an 
even probability density function p Z (z). y(n) is the adaptive filter 
output and e(n) = d(n) − y(n) is the estimation error to be mini-
mized in the kurtosis sense.

The cost function for the LMK algorithm is the negative kurtosis 
of e(n), given by [11]

J (n) = 3E2[e2(n)] − E[e4(n)] (1)

given W (n), or equivalently, given W = {W (0), · · · , W (n)}.
The LMK weight update equation is given by [11]

W (n + 1) = W (n) − μ∇̂ J (n) (2)

where

−∇̂ J (n) = 4[3σ 2
e (n) − e2(n)]e(n)X(n) (3)

is the stochastic approximation of the gradient of J (n), X(n) is the 
input vector, e(n) = z(n) − V �(n)X(n), z(n) is the noise, V (n) =
W (n) − H is the weight error vector and σ 2

e (n) is the mean square 
error conditioned on W (n). Reference [11] proposes to compute 
σ 2

e (n) recursively as

σ 2
e (n) = βσ 2

e (n − 1) + e2(n) (4)

where σ 2
e (n) = E[e2(n)|V] with V = {V (0), · · · , V (n)}.
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