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a b s t r a c t

Total variation (TV) regularization is a popular method for solving a wide variety of

inverse problems in image processing. In order to optimize the reconstructed image, it is

important to choose a good regularization parameter. The unbiased predictive risk

estimator (UPRE) has been shown to give a good estimate of this parameter for

Tikhonov regularization. In this paper we propose an extension of the UPRE method to

the TV problem. Since direct computation of the extended UPRE is impractical in the

case of inverse problems such as deblurring, due to the large scale of the associated

linear problem, we also propose a method which provides a good approximation of this

large scale problem, while significantly reducing computational requirements.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Many image restoration tasks can be posed as linear
inverse problems of the form

Kx¼ bþm, ð1Þ

where b represents the measured data, m represents noise,
K is a linear transform (e.g. a convolution operator in the
case of a deconvolution problem, and the identity in the
case of denoising), and x represents the vectorized form of
the recovered image. Regularization provides a method
for controlling the noise and possible poor-conditioning of
the operator K, prominent examples being the classical
Tikhonov regularization [1],
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where the matrix H is usually defined as a high-pass
filtering operator, or identity matrix. The more recent TV

regularization [2],
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where the TV norm JxJTV is defined as
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J1, with scalar operations applied to a

vector considered to be applied element-wise, and the
horizontal and vertical derivative operators written as Dx

and Dy, respectively. These two methods differ in the
regularization term; TV regularization is more difficult to
compute, but usually provides superior results.

Effective application of these regularization methods
depends critically on correct selection of the regulariza-
tion parameter l. While it is common practice for the user
to simply try various values until the solution looks
reasonable, the preferred approach is to estimate the l
value which optimizes some objective measure of image
quality, such as the signal to noise ratio (SNR) of the
reconstructed image with respect to the original unde-
graded image. There are several existing parameter
selection methods for Tikhonov regularization [3,4]:
(1) those requiring some knowledge of the noise m, such
as the discrepancy principle [5], and the UPRE [4], and
(2) those that do not, such as generalized cross-validation
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(GCV) [6,7] and the L-curve method [8]. Optimal parameter
selection for TV regularization, in contrast, has received
surprisingly little attention. To the best of our knowledge,
there are very few papers discussing this issue under the
TV framework [9–13].

We chose to extend the UPRE method to TV regular-
ization, based on its good performance in the Tikhonov
case [14], as well as the conceptual simplicity of the
extension. Since the direct extension is only able to deal
with relatively small-scale problems, we also discuss
how to bypass this obstacle by using a Krylov subspace
method. Experimental results are provided to demon-
strate the efficacy of our approach.

2. Unbiased predictive risk estimator

The UPRE approach, also known as the CL method,
was first proposed [15] for regression problems, and
then extended [4] to optimal parameter selection for
Tikhonov problems. Define the predictive error

pl ¼ Kxl�Kxtrue, where xl 2 R
n is the computed solution

for parameter l, and xtrue 2 R
n is the ground truth

solution. According to the UPRE method, the optimal
parameter l as the minimizer of the predictive

risk ð1=nÞJplJ
2, which is statistically estimated since xtrue

is, in general, unknown. The full derivation [4, Section
7.1], which is too lengthy to reproduce here, depends
on the ability to express the regularized solution
as having linear dependence on the data, xl ¼ RTK,lb,
where the regularization matrix RTK,l ¼ ðK

T KþlIÞ�1KT .
Defining the regularized residual rk ¼ Kxk�b, and the
influence matrix ATK,l ¼ KðKT KþlIÞ�1KT , the optimal
parameter l is the minimizer of

UPRETKðlÞ ¼
1

n
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2
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n
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where s2 is the noise variance. The primary computa-
tional cost of evaluating the function UPRETK at l
consists of solving the Tikhonov problem at l to obtain
xl, from which rl is obtained, and, more significantly the
computation of traceðATK,lÞ.

2.1. Extension of UPRE to total variation regularization

Extension of the UPRE to TV regularization is compli-

cated by the absence of a linear equation xl ¼ RTV,lb

for the solution in terms of the data. Following part
of the derivation of the lagged diffusivity algorithm
[4, Section 8.2], we approximate the TV term JxJTV

by JcððDxxÞ2þðDyxÞ2ÞJ1, where cðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xþb2

q
provides

differentiability at the origin. Correspondingly, the

gradient of the TV term, rðJxJTVÞ, at xl can be written as
LðxkÞx, where

LðxkÞ ¼DT
x diagðc0ðxkÞÞDxþDT

y diagðc0ðxkÞÞDy,

allowing one to define

RTV,l ¼ ðK
T KþlLðxkÞÞ

�1KT ,

which is in the required form except for the dependence
of matrix LðxkÞ on xk.

Followed this idea, the influence matrix in the TV case
can be written as

ATV,l ¼ KðKT KþlLðxlÞÞ
�1KT : ð5Þ

The derivation (which is too lengthy to reproduce here,
please refer to [4] for more details) of UPRETKðlÞ depends
on the symmetry of ATK,l and the Trace Lemma [4]. Since
ATV,l is also symmetric, the functional for UPRETVðlÞ can be
derived in a similar way, and it can be shown that the
UPRE for TV method shares the same form of expression
as the Tikhonov method, with UPRE functional

UPRETVðlÞ ¼
1
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n
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2.2. Computational limitations

In the Tikhonov case the computation of traceðATK,lÞ in
(4) is straightforward if the Singular Value Decomposition
(SVD) of A is available, but in many large scale problems it
is too expensive to compute the SVD of A. In [16] an
approximation method is proposed to approximate
the value of traceðATK,lÞ and related work can be found
in [17–20].

The primary difficulty in implementing the UPRE in the
TV case is the computation of traceðATV,lÞ in (6), since the
linear approximation of the regularization term in the TV
case further complicates the computation of UPRE in
comparison with the Tikhonov case. Direct computation
of the UPRE imposes very severe limits on the problem
size due to computation time and memory requirements.
In the following sections, we will introduce an algorithm
which computes an approximation of the UPRE with
vastly reduced computational cost, allowing application
of this method to standard image sizes. In implementing
this approximation, an enormous reduction in memory
requirements is achieved by avoiding explicit construc-
tion of matrices such as A, Dx, Dx

T, Dy and Dy
T, the algorithm

implementation requiring only matrix-vector products
involving these matrices.

2.3. Extension of UPRE to large scale total variation

In the computation of (6), the most expensive part, as
mentioned above, is the trace of the influence matrix,
tracefKðKT KþlLðxlÞÞ

�1KT g, since we need to deal with an
inverse first then find the trace value. Applying the
approach of Hutchinson [21], we can approximate trace
(f (M)) by the unbiased trace estimator

EðuT f ðMÞuÞCtraceðf ðMÞÞ, ð7Þ

where u is a discrete multivariate random variable, which
takes each entry the values �1 and +1 with probability
0.5, and the matrix M is symmetric positive definite (SPD).

Define the eigenvalue decomposition of M as
M¼QTLQ , where Q is an orthogonal matrix and L is a
diagonal matrix of eigenvalues ri in increasing order.
Then, following [19,20], it can be shown that

uT f ðMÞu¼
Xn

i ¼ 1

f ðriÞ ~u
2
i ¼

Z b

a
f ðrÞdmðrÞ, ð8Þ
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