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a b s t r a c t

Recently distributed adaptive estimation algorithms have been proposed as a solution

to the issue of linear estimation over distributed networks. In all previous works, the

performance of such algorithms is considered only for infinite-precision arithmetic

implementation. In this paper we study the performance of distributed incremental

least mean square (DILMS) estimation algorithm when it is implemented in finite-

precision arithmetic. To this aim, we first derive the quantized version of the DILMS

algorithm. Then a spatial–temporal energy conservation argument is used to derive

theoretical expressions that evaluate the steady-state performance of individual nodes

in the network. Simulation results show that there is a good match between the theory

and simulation.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Distributed estimation deals with the extraction of
information from data collected at nodes that are
distributed over a geographic area. The main objective is
to obtain an estimate that is as accurate as the one that
would be obtained if each node had access to the
information across the entire network [1]. In many
applications, it is necessary to perform estimation in a
constantly changing environment without having avail-
able a (statistical) model for the underlying processes of
interest. This motivates the development of distributed
adaptive estimation schemes. In these schemes, every
node is equipped with local computing ability to derive
local estimate and share it with its predefined neighbors.
Particular merits of a distributed adaptive network are its
abilities to collaborate and adapt. The adaptive property
enables the network to track not only the variations of the
environment but also the topology of the network. On the

other hand due to cooperative structure the computa-
tional burden is shared over the individual nodes so that
communications are reduced as compared to a centralized
network, and power and bandwidth usage are also
thereby reduced [2]. Distributed adaptive networks (net-
works with distributed adaptive estimation algorithms)
can therefore find potential application in a wide number
of fields, such as precision agriculture, environmental
monitoring and military.

In [1–4] distributed incremental adaptive estimation
algorithms which have a cyclic pattern of cooperation are
developed and their transient and steady-state perfor-
mance analyses are also provided. DILMS and distributed
recursive least-square (DRLS) are the examples of
such algorithms. This scheme inherently requires a
Hamiltonian cycle through which the estimates are
sequentially circulated from sensor to sensor. When more
communication and energy resources are available a
diffusion cooperative scheme can be applied. In these
schemes each node updates its estimate using all avail-
able estimates from the neighbors, as well as data and its
own past estimate. In [5–7], diffusion implementations of
distributed adaptive estimation algorithms are developed.
In these algorithms, each node can communicate with all
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its neighbors as dictated by the network topology. Both
LMS-based and RLS-based diffusion algorithms have been
considered in the literature.

In all of the previous works distributed adaptive
estimation algorithms have been assumed to use infi-
nite-precision arithmetic. In this paper we study the
performance of DILMS estimation algorithm when it is
implemented in finite-precision arithmetic. The impor-
tance of such a study arises from the fact that the
performance of distributed adaptive estimation algo-
rithms (like DILMS) is strongly based on the adaptive
filter which is used in their structure. On the other hand,
the performance of adaptive filters can vary significantly
when they are implemented in finite-precision arithmetic.

Throughout the paper, we adopt boldface letters for
random quantities and normal font for nonrandom
(deterministic) quantities. We also use capital letters for
matrices and small letters for vectors. The � symbol is
used for both complex conjugation for scalars and
Hermitian transpose for matrices. The weighted norm
for a vector is defined as JxJ2

S9x�Sx.

2. Estimation problem and the adaptive distributed
solution

2.1. Incremental LMS solution

Consider a network composed of N distributed nodes.
The purpose is to estimate an unknown parameter M � 1
vector wo from multiple spatially independent but
possibly time-correlated measurements collected at N

nodes in a network. Each node k has access to time-
realizations {dk(i), uk,i} of zero-mean spatial data fdk,ukg

where each dk is a scalar measurement and each uk is a
1�M row regression vector. Collecting regression and
measurement data into global matrices results
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The objective is to estimate the M�1 vector w that solves

min
w

JðwÞ where JðwÞ ¼ EfJd�UwJ2
g ð2Þ

The optimal solution wo satisfies the normal equations [2]

Rdu ¼ Ruwo ð3Þ

where

Rdu ¼ EfU�dg and Ru ¼ EfU�Ug ð4Þ

Note that in order to use (3) to compute wo each node
must have access to the global statistical information
{Ru, Rdu} which in turn, needs a lot of communication and
computational resources. Moreover, such an approach, do
not enable the network to response to changes in
statistical properties of data. The DILMS algorithm is a
solution to the above-mentioned problems [2,3]. The

update equation in DILMS is given by

wk,i ¼wk�1,i�mu�k,i½dkðiÞ�uk,iwk�1,i� ð5Þ

where wk,i denotes the local estimate of wo at node k at
time i and m is the step size. The calculated estimates are
sequentially circulated from node to node. Note that to
implement the DILMS, the time realizations {dk(i), uk,i} are
used.

2.2. Quantized version of DILMS

The DILMS algorithm can be implemented in finite-
precision at every node k as shown in Fig. 1, where the
QðxÞ block denotes the fixed-point quantization of x,
xq ¼QðxÞ is the quantized value of x and x̂ ¼ x�xq is the
quantization error. Let nr and Lr denote the number of bits
and the saturation level of quantization for x respectively,
where x could be a scalar or entries of a vector. Then, for
real-valued data, the variance of quantization error is [8]

s2
r ¼

1

12

L2
r

2nr
ð6Þ

As it is shown in Fig. 1, the quantized DILMS algorithm
operates on fdq

kðiÞ,u
q
k,i,z

q
kðiÞ,w

q
k,ig, which are related to their

unquantized quantities via

dkðiÞ ¼ dq
kðiÞþ d̂kðiÞ, zkðiÞ9uk,iwk�1,i ¼ zq

kðiÞþ ẑkðiÞ

uk,i ¼ uq
k,iþ ûk,i, wk,i ¼wq

k,iþŵk,i ð7Þ

where fd̂kðiÞ,ûk,i,ẑkðiÞ,ŵk,ig are the corresponding
quantization errors. Using (6) we can conclude that the
fd̂kðiÞ, ẑkðiÞg have variance s2

r and ûk,i has covariance
matrix s2

r IM . Note that we can use different number of bits
to quantize different quantities like wk,i. Now, according to
Fig. 1 we have

wq
k,i ¼Qðw

q
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where (a) is valid when m is chosen as a power of 2�1.
In (8) ak,i and bk,i are the quantization errors in the
evaluation of corresponding QðxÞ and both have
covariance matrix s2

r IM . Substituting uq
k,i from (7) into

(8) and expanding, we find that the quantized version of
DILMS can be obtained as

wq
k,i ¼wq

k�1,iþmu�k,ie
q
kðiÞ�pk,i ð9Þ

where

pk,i ¼ ak,iþbk,iþmû
�

k,ie
q
kðiÞ ð10Þ
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Fig. 1. A block diagram representation of quantized implementation of

DILMS algorithm in node k.
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