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a b s t r a c t

Periodogram is an important tool for analyzing time series of mixed spectra that can be

decomposed as sinusoids plus noise. While effective in many situations, the ordinary

periodogram has two major shortcomings: it cannot resolve sinusoids whose

frequencies are separated by less than 1 cycle per unit time; it does not possess

sufficient robustness against heavy-tailed noise such as outliers. An alternative

periodogram is introduced in this article with the aim of improving the frequency

resolution as well as the robustness of the ordinary periodogram. The new periodogram,

called bivariate ‘1�periodogram, is derived from the maximum likelihood method of

multiple frequency estimation under the assumption of Laplace white noise. The

desired high-resolution and robustness property of the bivariate ‘1�periodogram is

confirmed by simulation studies. Superior statistical efficiency over alternative methods

is also demonstrated.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

A time series of mixed spectrum is a random sequence
that can be decomposed as sinusoids plus noise. The
Fourier-transform-based periodogram is a widely used
tool for analyzing such time series. Important applications
of periodogram include detection of hidden periodicities
and estimation of unknown sinusoidal parameters
(amplitude and frequency) [1]. Periodogram analysis
often yields satisfactory results. For example, it is well
known that very accurate frequency estimates of the
sinusoidal components can be obtained from the local
maxima of a periodogram [2]. However, in order to obtain
such results, two critical preconditions have to be
satisfied. One condition is that the frequencies of
the sinusoids must be well separated. Indeed, it is well
known that the periodogram cannot resolve sinusoidal

frequencies that differ by less than 1 cycle per unit time.
Another condition is that the noise must be free of outliers
because the periodogram lacks the necessary robustness
against outlier contamination [3].

To overcome these obstacles, we introduce a new
periodogram, called bivariate ‘1�periodogram, that
has demonstrable advantages over the traditional
periodogram in resolving closely spaced frequencies with
desired robustness. The bivariate ‘1�periodogram is
derived from the maximum likelihood method for
estimating the frequencies of two sinusoids in Laplace
white noise. It is the counterpart of a similar periodogram,
called bivariate ‘2�periodogram, derived under the
assumption of Gaussian white noise as a natural extension
of the traditional univariate periodogram. The bivariate
‘2�periodogram has higher resolution than the univariate
periodogram but still lacks robustness due to the inherit
Gaussian assumption. The bivariate ‘1�periodogram
provides both high resolution and robustness, thanks to
its root in the least-absolute-deviations (LAD) criterion
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instead of the least-squares (LS) criterion. Related works
on the LAD method for spectral analysis can be found in
[3–6]. Some computational issues of the LAD method
are discussed in [7–9], for example. Note that the
bivariate periodograms discussed in this paper should
not be confused with the periodogram–coperiodogram
matrix of vector-valued time series or the biperiodogram
based on the third-order cumulants of scalar time series.

The rest of the paper is organized as follows. Section 2
discusses the Gaussian maximum likelihood method of
frequency estimation and the corresponding bivariate
‘2�periodogram. Section 3 introduces the bivariate
‘1�periodogram based on the Laplace maximum like-
lihood approach and demonstrates its robustness and
high resolution property for spectral analysis. Concluding
remarks are given in Section 4.

2. Bivariate ‘2�periodogram

Consider the problem of estimating the frequencies of
two complex sinusoids in Gaussian white noise from a
data record y :¼ ½y1; . . . ; yn�

T of length n that satisfies

y¼ Fðx0Þb0þe: ð1Þ

In this expression, b0 2 C
2 and x0 2 O :¼ ð0;2pÞ �

ð0;2pÞ\fðo1;o2Þ : o1 ¼o2g are unknown constants,
FðxÞ :¼ ½fðo1Þ; fðo2Þ� is an n-by-2 matrix with x :¼

ðo1;o2Þ and fðoÞ :¼ ½expðioÞ; . . . ; expðinoÞ�T 2 Cn, and e 2
Cn is the noise vector comprising i.i.d. complex Gaussian
random variables with mean zero and unknown variance
s240. Under the Gaussian assumption, the maximum
likelihood estimator of the sinusoidal parameter ðb0;x0Þ

is given by

ðb̂; x̂Þ :¼ arg min
b2C2 ;x2O

Jy�FðxÞbJ2; ð2Þ

where J � J denotes the ‘2�norm of complex vectors, i.e.,
the square root of the sum of squared real and imaginary
parts of all components.

The joint optimization problem in (2) can be solved by
first optimizing b for fixed x. In doing so, the Gaussian
maximum likelihood (GML) frequency estimator x̂ in (2)
can be expressed as

x̂ ¼ arg max
x2O
fJyJ2

�Jy�FðxÞb̂ðxÞJ2
g; ð3Þ

where b̂ðxÞ :¼ fFH
ðxÞFðxÞg�1FH

ðxÞy is the least-squares
(LS) solution that minimizes Jy�FðxÞbJ2 with respect to
b 2 C2 for fixed x 2 O. It is evident that in Eq. (3) the
nonnegative bivariate function

GnðxÞ :¼ JyJ2
�Jy�FðxÞb̂ðxÞJ2

ð4Þ

plays the same role as the traditional univariate period-
ogram whose global maximizer coincides with the GML
frequency estimator for a single complex sinusoid in
Gaussian white noise [10].

Numerical and analytical studies show [11,12] that the
GML estimator x̂ is capable of producing very accurate
frequency estimates even if the frequency separation
is less than the resolution limit of the traditional
periodogram, which is equal to 2p=n (or 1 cycle per unit
time). Therefore, a graphical plot of GnðxÞ as a function of

o1 and o2 should reveal a prominent peak near the true
signal frequency x0 but away from the diagonal line
o1 ¼o2. This gives the idea of regarding GnðxÞ in (4) as a
bivariate periodogram and using it graphically to uncover
closely spaced hidden frequencies that cannot be resolved
by means of the traditional periodogram. We call GnðxÞ
the bivariate ‘2�periodogram. Because of symmetry, it
suffices to consider the bivariate ‘2�periodogram above
(or below) the diagonal line. The high-resolution property
of the bivariate ‘2�periodogram is demonstrated by the
simulation example shown in Fig. 1.

The time series shown in Fig. 1 is of length n=50 and
comprises three complex sinusoids in simulated Gaussian
white noise:

yt ¼ expðito01Þþexpðito02Þþ1:3expðito03Þþet ðt¼ 1; . . . ;nÞ:

The first two frequencies (o01 :¼ 2p� 0:12 and
o02 :¼ 2p� 0:13) are separated only by one-half of
the resolution limit of the traditional periodogram, i.e.,
by 2p� 0:5=n, whereas the third frequency (o03 :¼ 2p
�0:25) is well separated from the others. As shown in
Fig. 1, the univariate periodogram is unable to resolve o01

and o02, as it produces only two, rather than three,
spectral peaks. The bivariate ‘2�periodogram, on the
other hand, successfully reveals the closely spaced
frequencies by portraying them as a well-defined local
maximum near the signal frequency (2p� 0:12;2p �0:13)
and away from the diagonal line. Notice the absence of
such local maxima near the diagonal line around
frequency 2p� 0:25 where only a single sinusoid
is present. The larger maximum near ð2p� 0:125;2p�
0:25Þ corresponds to the two spectral peaks seen in the
univariate periodogram.

Frequency estimates can be obtained by finding the
local maxima of the bivariate ‘2�periodogram numeri-
cally. For demonstration, we employ a general-purpose
optimization routine called optim in the open-source
software R. It is an implementation of the iterative
Nelder–Mead algorithm [13] for unconstrained optimiza-
tion without the differentiability requirement. To avoid
the complication of initialization techniques, we simply
choose the true signal frequencies as initial value. For
the bivariate ‘2�periodogram shown in Fig. 1, the
optimization routine with initial value (2p� 0:12;2p
�0:13) produces a frequency estimate ð2p� 0:1175;2p�
0:1275Þ with average absolute error 2p� 0:0025.

3. Bivariate ‘1�periodogram

Although effective as a high-resolution spectral analy-
zer, the bivariate ‘2�periodogram is not robust in the
presence of outlier contamination, as demonstrated by
Fig. 2. In this example, the noise is the same as that in
Fig. 1 except for a large outlier contained in its real part at
t=12. The outlier dramatically alters the appearance of the
bivariate ‘2�periodogram. The local maximum in Fig. 1
that corresponds to the closely spaced frequencies
disappears completely in Fig. 2. Even the spectral peak
near ð2p� 0:125;2p� 0:25Þ becomes much less
prominent, as does the first spectral peak in the
univariate periodogram. The frequency estimate
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