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a b s t r a c t

In this paper, the order distribution concept in the frequency domain identification has

been extended to include fractional order systems having poles and zeros simulta-

neously. The existing nonlinear optimization problem appeared when both poles and

zeros, is are changed to a quadratic problem that can be solved using least squares

algorithms. To collect the required data, system is excited by a multi sine input signal

with appropriately selected frequencies. Then a nonparametric identification in

frequency domain is accomplished to calculate the empirical transfer function estimate

(ETFE). This estimate is then used to implement the frequency domain identification on

all defined members of the model set to estimate the model parameters in noise free

and disturbed cases.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Fractional calculus as a mathematical topic was
introduced by Leibniz and L’Hospital about 315 years
ago. This mathematical representation has recently been
used to describe phenomena observed in such processes
as electro-magnetic [1], electro-mechanic [2], heat trans-
fer [3,4], electro-chemical [5], visco-elastic materials [6]
and biology [7–9]. Some basic concepts of fractional
systems which constitute an important branch of the
fractional calculus have been discussed in [10–13]. There
are many researches conducted on fractional calculus
applications in control [14–17], image processing [18,19],
signal processing [20], and calculational mathematics
[21]. Till now many different aspects of the fractional
order system applications have been studied which

includes stability analysis [22–24], system identification
[25–35], system approximation [36], synchronization
[37,38], dynamical behavior analysis [39–42], controller
order reduction [43], evolutional optimization [44] and
chaos [45].

System identification is an essential part of the control
engineering and incorporates many different approaches
and techniques to find a kind of relation among inputs
and outputs of a system. The mentioned relations can be
represented either in time domain or frequency domain
and also can be determined either by time domain or
frequency domain measurements from the system [46]. In
[29,47], the frequency domain representation of a frac-
tional order system is determined in the equation error
(EE) and output error (OE) based model structures,
respectively, using time domain measurements. In deter-
ministic case of the frequency domain identification, the
first work was reported in [48] where the existing
nonlinear least squares problem is replaced by a linear
least squares one by multiplying the equation error with
the denominator of the transfer function. Authors in [49]
overcame the lack of sensitivity to low frequency errors
of the linear least squares estimator by an iterative
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procedure. In [50,51] authors have solved the existing
nonlinear least squares problem using the Newton–Gauss
iteration scheme for continuous and discrete time model,
respectively. The identification of fractional models in a
way rather close to [48], i.e. restricted to all poles
commensurate transfer functions has been performed in
[30,52] and the similar method for all poles complex
commensurate order system has been reported in [53].
Some of the frequency domain identification methods for
integer order models were extended to fractional ones in
[54]. In [55], the coherence function has been used to
design an appropriate frequency domain identification
experiment. In [56] an algorithm is presented for
identifying state-space models from the frequency-do-
main data.

In this paper a new method is proposed to identify
fractional pole-zero transfer functions using the frequency
domain data. A combinational procedure using complex
curve fitting and nonlinear optimization is employed to
obtain order distribution of the numerator and denomi-
nator of the transfer function. This can be considered as an
extension to the work presented in [30] where only
all-pole transfer functions were studied. Furthermore, a
new approach is introduced to improve the condition
number of the involved matrices in the calculations. The
proposed method is examined first by identification of an
example deterministic system and then is performed for a
special stochastic system by pre-processing of the
measured data.

The rest of the paper has been structured as follows.
Section 2 includes materials related to the frequency
domain identification of fractional order systems.
Generalization of an existing method on all-pole
transfer functions to pole-zero transfer functions is
described and its associated problems are discussed.
Some numerical examples are presented in Section 3 to
explain how the new method works and what perfor-
mance should one expect. Some validation results on the
obtained models are given in Section 4 which is based
on time domain responses. The paper is concluded in
Section 5.

2. Using order distribution approach for frequency
domain identification

In [30], an all-pole transfer function with the following
structure was considered,

GðsÞ ¼
1

PðsÞ
¼

1R qmax

0 kðqÞsq dq
: ð1Þ

Assuming that the order distribution, kðqÞ, is such that the
integral converges, relation (1) can be approximated by
the following one using an Euler approximation at each
frequency,

XN

n ¼ 0

knðjoÞnQ Q �
1

GðjoÞ ;NQ ¼ qmax; ð2Þ

where Q is the sample width in the variable q. The
following matrix form generalizes (2) for L different

frequency response samples
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This equation is written in compact form as QWk¼ g and
has the following solution for unknown k provided that
2LZNþ1.

k¼Q -1ðWT WÞ-1WT g: ð4Þ

Two points should be considered here. First, in discrete
order distributions, kðqÞ is Dirac-delta function and
therefore there would be no need for approximation of
the integral in (1) to get to (2). In other words, when one
considers the discrete order distributions Q should not be
appeared as a coefficient in (3). Second, k in (4) may get
complex values, sometimes with big imaginary parts, due
to the computer round off errors, whereas it must be real
value.

To consider these two points in the discrete order
distributions cases, one should remove coefficient Q in (3)
and also use a complex curve fitting (such as one in [48])
to solve it for k, i.e.

k¼ ½ReðWHWÞ�-1ReðWHgÞ: ð5Þ

The presented method can be generalized to include
transfer functions with both zero(s) and pole(s). Allowing
the restriction on the maximum possible numerator and
denominator order, a general system representation
becomes

GðsÞ ¼
YðsÞ

UðsÞ
¼

R qmM

qm0
mðqÞsq dqR qnN

qn0
nðqÞsq dq

¼
mMsqmM þmM-1sqmM-1þ � � � þm1sqm1þm0sqm0

sqnNþnN-1sqnN-1þ � � � þn1sqn1þn0sqn0
; ð6Þ

where qm0, qn0 are the lower limits and qmM , qnN are the
upper limits on the differential orders. Notice that the
denominator polynomial is monic and also qm0, qn0 are
not nonzero simultaneously.

mðqÞ and nðqÞ are the order distribution of the
numerator and denominator, respectively, (as it is shown
in Fig. 1 for mðqÞ). In discrete case, order distribution
contains Dirac-delta functions at distinct orders of the
mðqÞ or nðqÞ.

Now we choose L frequency samples by replacing s by
jo where o is linearly spaced in ½omin;omax�.
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Fig. 1. Order distribution of numerator mðqÞ.
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