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a b s t r a c t

This paper addresses the delay-dependent stability problem for 2-D discrete-time

systems described by the Fornasini–Marchesini second state-space model with interval

time-varying delays and saturation nonlinearities. By using linear matrix inequalities

(LMIs) method, the delay-range-dependent conditions are derived, which not only

depend on the difference between the upper and lower delay bound but also on the

upper delay bound of the interval time-varying delays. Finally, numerical example is

given to illustrate the effectiveness of the proposed technique.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

During the past few decades, two-dimensional (2-D) systems have received intensive interest since it take an important
role in both theory and application such as multi-dimensional digital filtering, linear image processing, signal processing,
process control, and so on [1–3]. As is well known, the values of filter coefficients are stored in registers which have a finite
wordlength in hardware implementations. When 2-D systems are implemented in the finite wordlength format, the
saturation nonlinearities often occur in 2-D systems. However, such nonlinearities may lead to instability. As a result, the
study of stability problem for 2-D systems with saturation nonlinearities is important not only for its theoretical interest
but also for application to practical filter design. Recently, a great number of stability conditions for 2-D systems with
saturation nonlinearities have been reported in the literature [4–14].

In 2-D systems, time delays must be taken into account due to the finite speed of information processing. Time delays
may lead to oscillation, instability, and poor performance. Therefore, the study of 2-D systems with time delays has
received much attention in recent years; see, for example [15–20], and the references therein. In practical implementations
of 2-D systems, time delays and the saturation nonlinearities are frequently encountered. Such systems can be represented
as 2-D systems with time delays and saturation nonlinearities. Recently, the delay-independent stability problem for
one-dimensional (1-D) systems with constant time delays subject to saturation nonlinearities has been addressed [21,22].
However, to the author’s knowledge, the delay-dependent stability problem for 2-D systems with both interval
time-varying delays and saturation nonlinearities has not been fully investigated.

This paper is concerned with the asymptotic stability of 2-D systems described by the Fornasini–Marchesini second
local state-space model under interval time-varying delays and saturation nonlinearities. Based on Lyapunov stability
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theory, the delay-range-dependent conditions are derived to ensure the asymptotic stability for the addressed system.
Furthermore, the conditions are expressed in terms of the linear matrix inequalities [23], which not only depend on the
difference between the upper and lower delay bound but also on the upper delay bound of the interval time-varying
delays. An illustrative example is given to show the effectiveness and applicability.

The notation used throughout the paper is quite standard. Z is the set of nonnegative integers, Rn is the n-dimensional
Euclidean space, and Rn�m is the set of n�m real matrices. PT stands for the transpose of a matrix P, and P40 ðo0Þmeans
that P = PT is positive definite (negative definite). The boldface characters represent matrix variables. In block matrices, � is
used as an ellipsis for the transpose of the block at the symmetric position.

2. Problem formulation

Consider the 2-D discrete-time systems with interval time-varying delays and saturation nonlinearities described by
the Fornasini–Marchesini second state-space model [24]

xðiþ1; jþ1Þ ¼fðxði; jÞÞ ¼ ½f1ðx1ði; jÞÞ f2ðx2ði; jÞÞ � � � fnðxnði; jÞÞ�
T;

xði; jÞ ¼ ½x1ði; jÞ x2ði; jÞ � � � xnði; jÞ�
T ¼ A

xðiþ1; jÞ

xði; jþ1Þ

" #
þAd

xðiþ1; j�d1ðjÞÞ

xði�d2ðiÞ; jþ1Þ

" #
; ð1Þ

where x 2 Rn is the state vector. The matrices

A¼ ½A1 A2�; Ad ¼ ½Ad1
Ad2
�;

where A1, A1, Ad1
and Ad2

are known constant matrices with compatible dimensions. d1(j) and d2(i) are time-varying delays
along vertical and horizontal directions, respectively. We assume d1(j) and d2(i) satisfying

d1Lrd1ðjÞrd1H; d2Lrd2ðiÞrd2H; ð2Þ

where d1L, d1H, d2L, and d2H are constant positive scalars representing the lower and upper delay bounds along vertical and
horizontal directions, respectively. fkðxkði; jÞÞ is saturation nonlinearities given by

fkðxkði; jÞÞ ¼

1; xkði; jÞ41

xkði; jÞ; �1rxkði; jÞr1

�1; xkði; jÞo�1

8><
>:

9>=
>;; k¼ 1;2; . . . ;n: ð3Þ

The boundary conditions associated with system (1) are defined as follows:

xði; jÞ ¼ sij; 80r iok1; j¼�d1H;�d1Hþ1; . . . ;0;

xði; jÞ ¼ 0; 8 iZk1; j¼�d1H;�d1Hþ1; . . . ;0;

xði; jÞ ¼ tij; 80r jok2; i¼�d2H;�d2Hþ1; . . . ;0;

xði; jÞ ¼ 0; 8 jZk2; i¼�d2H;�d2Hþ1; . . . ;0;

s00 ¼ t00; ð4Þ

where k1o1 and k2o1 are positive integers, sij and tij are given vectors. The following definition and lemma will be used
later.

Definition 1 (Paszke et al. [19]). The system (1) is asymptotically stable if lim‘-1 w‘ ¼ 0 for all bounded boundary
conditions in (4), where

w‘ ¼ supfJxði; jÞJ : iþ j¼ ‘; i; jZ1g:

Definition 2 (Gao et al. [25], Chu and Glover [26]). A square matrix Z ¼ ½zij� 2 R
n�n is called diagonally dominant matrix if

ziiZ

Xn

jai

jzijj; 8 i¼ 1;2; . . . ;n:

Lemma 1 (Qiu et al. [27]). For any vectors dðtÞ 2 Rn, two positive integers k0, k1, and matrix 0oR 2 Rn�n, the following

inequality holds:

�ðk1�k0þ1Þ
Xk1

t ¼ k0

dT
ðtÞRdðtÞr�

Xk1

t ¼ k0

dT
ðtÞ

" #
R
Xk1

t ¼ k0

dðtÞ

" #
:
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