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a r t i c l e i n f o

Article history:

Received 25 November 2009

Received in revised form

26 January 2010

Accepted 9 February 2010
Available online 11 February 2010

Keywords:

ICA mixtures

Classifiers

Sequential dependence

Hypnograms

a b s t r a c t

We present in this communication a procedure to extend ICA mixture models (ICAMM)

to the case of having sequential dependence in the feature observation record. We call it

sequential ICAMM (SICAMM). We present the algorithm, essentially a sequential Bayes

processor, which can be used to sequentially classify the input feature vector among a

given set of possible classes. Estimates of the class-transition probabilities are used in

conjunction with the classical ICAMM parameters: mixture matrices, centroids and

source probability densities. Some simulations are presented to verify the improvement

of SICAMM with respect to ICAMM. Moreover a real data case is considered: the

computation of hypnograms to help in the diagnosis of sleep disorders. Both simulated

and real data analysis suggest the potential interest of including sequential dependence

in the implementation of an ICAMM classifier.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Mixtures of independent components analyzers are
progressively recognized as powerful tools for versatile
modeling of arbitrary data densities [1–7]. In most cases
the final goal is to classify the observed data vector x
(feature) in a given class from a finite set of possible
classes. To this aim, the probability of every class given
the observed data vector p½Ck=x� is to be determined. Then
the class having maximum probability is selected. Bayes
theorem is claimed for the practical computation of the
required probabilities, as it allows expressing p½Ck=x� in
terms of the vector observation mass density. Considering
K classes we may write

p½Ck=x� ¼
p½x=Ck�p½Ck�

p½x�
¼

p½x=Ck�p½Ck�PK
k0 ¼ 1 p½x=Ck0 �p½Ck0 �

ð1Þ

where the mixture model of p½x� is evident in the
denominator of (1). ICA mixture model (ICAMM)
considers that the observations corresponding to a given
class k are obtained by linear transformation of vectors
having independent components plus a bias term:

x¼Akskþbk. Equivalently, this implies that the observa-
tion vector in a given class can be expanded around a
centroid vector bk in a basis formed by the columns of Ak.
It is assumed that the basis components are independent
so that matrix Ak is non-singular. When this assumption is
becoming invalid, due for example to high dimension of
the observation vector, some dimension reduction tech-
niques like classical principal component analysis (PCA)
are routinely used. The transforming matrix, the centroid
and the marginal probability density functions (which can
be arbitrary) of the independent components of sk (called
sources) define a particular class.

Using standard results from probability theory, we
have that p½x=Ck� ¼ jdetA�1

k jp½sk�. On the other hand,
algorithms for learning the ICAMM parameters
ðAk;bk; p½sk� k¼ 1 . . .KÞ in supervised or unsupervised
frameworks can be found in the given Refs. [1–7].
Therefore, if the classifier has been trained, we can
compute the required probabilities using

p½Ck=x� ¼
jdetA�1

k jp½sk�p½Ck�PK
k0 ¼ 1 jdetA�1

k0 jp½sk0 �p½Ck0 �
sk ¼A�1

k ðx�bkÞ: ð2Þ

However, very often, the classes and observations do not
appear in a totally random manner, but they exhibit some
degree of sequential dependence in time or space
domains. This means that the computation of the class
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probabilities should consider the whole history of
observations. Thus, if we define the indexed matrix of
observations XðnÞ � ½xð0Þ xð1Þ . . .xðnÞ� we should compute
p½CkðnÞ=XðnÞ�.

We present in this communication (Section 2) a
procedure to extend ICAMM to the case of sequential
dependence. We call it sequential ICAMM (SICAMM). In
Section 3 some experiments are included with simulated
and real data, showing that the classification error
percentage can be reduced by SICAMM, in comparison
with ICAMM.
2. Sequential ICAMM

To compute p½CkðnÞ=XðnÞ� we start from (1). We assume
that, conditional on CkðmÞ, the observed vectors
xðmÞm¼ 0 . . .n are independent. This is a key assumption
in the classical Hidden Markov Model (HMM) [8] structure
which is described in Fig. 1. Statistical dependences between
two successive instants are defined by the arrows connecting
the successive classes. However, successive observed vectors
are not directly connected, i.e., the distribution of every xðmÞ
is totally defined if we know the corresponding class CkðmÞ.
In particular, this implies that p½XðnÞ=CkðnÞ� ¼ p½xðnÞ=CkðnÞ�

�p½Xðn�1Þ=CkðnÞ�. Using this property and the Bayes’s rule,
we may write

p½CkðnÞ=XðnÞ� ¼
p½XðnÞ=CkðnÞ�p½CkðnÞ�PK

k0 ¼ 1 p½XðnÞ=Ck0 ðnÞ�p½Ck0 ðnÞ�

¼
p½xðnÞ=CkðnÞ�p½Xðn�1Þ=CkðnÞ�p½CkðnÞ�PK

k0 ¼ 1 p½xðnÞ=Ck0 ðnÞ�p½Xðn�1Þ=Ck0 ðnÞ�p½Ck0 ðnÞ�

¼
p½xðnÞ=CkðnÞ�p½CkðnÞ=Xðn�1Þ�p½Xðn�1Þ�

PK
k0 ¼ 1 p½xðnÞ=Ck0 ðnÞ�p½Ck0 ðnÞ=Xðn�1Þ�p½Xðn�1Þ�

¼
jdetA�1

k jp½skðnÞ�p½CkðnÞ=Xðn�1Þ�
PK

k0 ¼ 1 jdetA�1
k0 jp½sk0 ðnÞ�p½Ck0 ðnÞ=Xðn�1Þ�

ð3Þ

where, considering the implicit HMM

p½CkðnÞ=Xðn�1Þ� ¼
XK

k0 ¼ 1

p½CkðnÞ=Ck0 ðn�1Þ� � p½Ck0 ðn�1Þ=Xðn�1Þ�:

ð4Þ

Notice that, although rather artificially, (4) holds even for the
case of sequential class independence, in which case we may
write p½CkðnÞ=Ck0 ðn�1Þ� ¼ p½CkðnÞ� and then

p½CkðnÞ=Xðn�1Þ� ¼
XK

k0 ¼ 1

p½CkðnÞ�

� p½Ck0 ðn�1Þ=Xðn�1Þ� ¼ p½CkðnÞ�:

Thus, using (3) and (4), p½CkðnÞ=XðnÞ� can be computed from
the class transition probabilities p½CkðnÞ=Ck0 ðn�1Þ� and from
the last estimates available of the class probabilities
p½Ck0 ðn�1Þ=Xðn�1Þ�.

Therefore a sequential algorithm is proposed to be
called SICAMM. Let us describe the algorithm in a more
specific form. We assume that the parameters
Ak;bk; p½sk� k¼ 1 . . .K have been previously estimated by
means of an ICAMM learning algorithm among the several
available in the literature and that the class-transition
probabilities are also known or estimated. The following
describes the algorithm:

Initialization n=0

Xð0Þ ¼ ½xð0Þ�

skð0Þ ¼A�1
k ðxð0Þ�bkÞ k¼ 1 . . .K;

p½Ckð0Þ=Xð0Þ� ¼
jdetA�1

k jp½skð0Þ�PK
k0 ¼ 1 jdetA�1

k0 jp½sk0 ð0Þ�

For n=1 to N

XðnÞ ¼ ½xð0Þ xð1Þ . . .xðnÞ�

skðnÞ ¼A�1
k ðxðnÞ�bkÞ k¼ 1 . . .K

p½CkðnÞ=Xðn�1Þ� ¼
XK

k0 ¼ 1

p½CkðnÞ=Ck0 ðn�1Þ� � p½Ck0 ðn�1Þ=Xðn�1Þ�

p½CkðnÞ=XðnÞ� ¼
jdetA�1

k jp½skðnÞ�p½CkðnÞ=Xðn�1Þ�
PK

k0 ¼ 1 jdetA�1
k0 jp½sk0 ðnÞ�p½Ck0 ðnÞ=Xðn�1Þ�

Notice that the SICAMM algorithm can be expressed in the
form of a sequential Bayesian processor [8]

p½CkðnÞ=XðnÞ� ¼WkðnÞ

� p½CkðnÞ=Xðn�1Þ� WkðnÞ ¼
p½xðnÞ=CkðnÞ�

p½xðnÞ=Xðn�1Þ�
; ð5Þ

where p½CkðnÞ=Xðn�1Þ� is a ‘‘prediction’’ of the current
class given the pass history of observations and WkðnÞ

is an ‘‘updating weight’’ which measures the significance
of the current class relative to the significance of the
pass history of observations in generating the current
observation.

3. Experiments

3.1. Simulations

We have considered a simple scenario similar to the
first example included in the classical ICAMM Ref. [1].
Observations are vectors of dimension 2, and the number
of classes is also 2. In class 1 the observation vectors are
obtained by linearly transforming independent compo-
nent vectors where both components are obtained from
uniform distributions having zero mean and unit variance.
The same in class 2, but the distributions are zero mean
and unit variance Laplacian. The centroids were selected
relatively close, thus b1=[1 1]T and b2=[1.5 1.5]T. We
have compared the error percentages in classifying an
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Fig. 1. HMM description of the class-conditionally independence

between successive observation vectors.
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