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In a compressive sensing (CS) framework, a sparse signal can be stably reconstructed at a reduced 
sampling rate. Quantization and noise corruption are inevitable in practical applications. Recent studies 
have shown that using only the sign information of measurements can achieve accurate signal 
reconstruction in a CS framework. We consider the problem of reconstructing a sparse signal from 1-bit 
quantized, Gaussian noise corrupted measurements. In this paper, we present a variational Bayesian 
inference based 1-bit compressive sensing algorithm, which essentially models the effect of quantization 
as well as the Gaussian noise. A variational message passing method is adopted to achieve the inference. 
Through numerical experiments, we demonstrate that our algorithm outperforms state-of-the-art 1-bit 
compressive sensing algorithms in the presence of Gaussian noise corruption.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In a compressive sensing (CS) framework, the goal is to recover 
sparse signals from a small number of measurement samples [1,2]. 
The measurement of a signal x ∈ R N is obtained via

y = Ax (1)

where A ∈ R M×N is the measurement matrix with M < N , and 
y ∈ R M is the linear measurement of the signal. The recovery of x
from y is generally ill-posed; however, it was demonstrated that if 
x is K -sparse, i.e., no more than K � N entries of x are non-zero, 
the signal can be reconstructed exactly and effectively if A satisfies 
the restricted isometry property (RIP) [3].

The classical CS framework always assumes that the mea-
surement vector y is real-valued and has infinite bit precision. 
For practical considerations, however, the measurements must be 
quantized to finite bit depth, i.e., each continuous-valued measure-
ment must be mapped to a discrete value in a finite set. The effect 
of quantization has been studied [4–6].

Recent studies have shown that stable signal reconstruction can 
be achieved even if each measurement is quantized to a single bit. 
In many applications, the 1-bit quantization has significant bene-
fits. For example, in analog-to-digital conversion (ADC), the quan-
tizer for 1-bit measurement is a simple comparator, which is fast, 
inexpensive and robust to amplification distortion. In this case, we 
have
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y = sign(z) = sign(Ax) (2)

where z ∈ R M stands for the signal before quantization, and the 
sign(·) operator performs the sign function element-wise on the 
vector z, which returns +1 for positive numbers and −1 other-
wise. In this case, the scaling information of the measurements 
is wholly lost. Then, the goal is to recover the signal on the unit 
hyper-sphere.

The 1-bit CS framework was first studied by Boufounos and 
Baraniuk, and in [7], they proposed an algorithm named renor-
malized fixed point iteration (RFPI). Since then, many studies have 
been performed, and many algorithms have been developed, in-
cluding matching sign pursuit (MSP) [8], restricted-step shrinkage 
(RSS) [9], and binary iterative hard thresholding (BIHT) [10]. BIHT 
has been shown to perform better than the previous algorithms 
and is robust to sign flips. According to the experiments in [10], 
the one-sided l1 objective (BIHT) performs better when the noise 
level is low, while the one-sided l2 objective (BIHT-l2) is more 
suitable when more measurements flip their signs with increased 
noise. In [11], an adaptive outlier pursuit (AOP) method was intro-
duced to handle sign flips by adaptively detecting all the measure-
ments with sign flips. In [12], a linear program was proposed by 
Plan and Vershynin to address the noiseless 1-bit CS problem, and 
in [13], they introduced another convex program for the noisy case. 
In [14], a variational Bayesian algorithm was proposed to handle 
the sign flips caused by Gaussian noise, and this Bayesian method 
outperforms both BIHT and the convex program in [13]. In this 
Bayesian method, the effect of quantization is modeled as addi-
tive noise that is independent of the signal. However, there is an 
inherent relevance between the quantization noise and the signal, 

http://dx.doi.org/10.1016/j.dsp.2015.12.006
1051-2004/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.dsp.2015.12.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:zhouzcb@mail.ustc.edu.cn
mailto:liufl@ustc.edu.cn
http://dx.doi.org/10.1016/j.dsp.2015.12.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2015.12.006&domain=pdf


C. Zhou et al. / Digital Signal Processing 50 (2016) 84–92 85

causing inaccuracy of the model. More recently, Fang et al. [15] in-
troduced a sigmoid function to enforce the consistency and use a 
majorization-minimization (MM) [16] based method to handle the 
noise-free case.

In this paper, we propose a robust variational Bayesian frame-
work to address the 1-bit CS problem with Gaussian noise corrup-
tion. Unlike the method in [14], we essentially model the effect of 
quantization as well as the Gaussian noise. A two-layer hierarchi-
cal prior is adopted to encourage the sparsity of the signal, and a 
variational message passing method [17] is performed to complete 
the Bayesian inference.

This paper is organized as follows. Section 2 introduces the 
new framework for 1-bit CS. Section 3 introduces the binary vari-
ational message passing (B-VMP) algorithm. The performance of 
the algorithm is illustrated in Section 4 through comparison to the 
state-of-the-art algorithms. We conclude this paper in Section 5.

2. A new framework for 1-bit CS

In this paper, we consider the case in which the linear mea-
surements are corrupted with Gaussian noise before quantization:

y = sign(z), z = Ax + n (3)

where x is the sparse signal of interest, y is the 1-bit quantized 
measurement vector, z is the noisy measurement vector before 
quantization, and n denotes the Gaussian noise. As the magnitude 
information of x is lost during the quantization, we restrict the so-
lution to the unit hyper-sphere

Dx = {
x|‖x‖2 = 1

}
(4)

For the sparse prior of signal x, we adopt a two-layer hierarchi-
cal prior

p(x;a,b) =
∫

p(x|α)p(α|a,b)dα (5)

where

p(x|α) ∝ N (x|0,Λ) · I D(x) (6)

p(α|a,b) =
N∏

i=1

Γ (ai|a,b) (7)

with Λ = diag(α−1) and an indicator function I D(x) that is 
equal to 1 if x ∈ D and 0 otherwise. N (x|μ, Σ) is a Gaus-
sian distribution with mean μ and covariance Σ . For a variable 
u ∼ Γ (a, b), the probability density function (PDF) is Γ (u|a, b) =
Γ (a)−1baua−1 exp(−bu), where Γ (a) denotes the Gamma func-
tion. In this paper, we follow the studies in [18] that argued that 
a = 1, b = 0 encourage sparser solutions than a = 0, b = 0, al-
though the latter are commonly used in sparse Bayesian learning 
frameworks [19]. Readers can refer to [18] for more information.

We assume that the noise variance σ 2 is known, as in [14], 
because the estimate of σ 2 can be inaccurate, as addressed in [20]. 
Recalling (3), the conditional likelihood of y given x and σ can be 
written as

p(y|x,σ ) =
M∏

i=1

Φ
(
σ−1(Bx)i

)
(8)

where

B = diag(y) · A (9)

and

Φ(z) = 1√
2π

z∫
−∞

exp

(
− t2

2

)
dt (10)

Fig. 1. Graphical hierarchical model of the proposed Bayesian model.

is the cumulative distribution function of the standard normal dis-
tribution. Finally, we can write the joint PDF of the observation 
model

p(y, x,α) = p(y|x)p(x|α)p(α) (11)

The formulation of this problem is very similar to the sparse probit 
regression [5] or sparse logistic regression [13]. The hierarchical 
model is shown in Fig. 1.

3. B-VMP: binary variational message passing for CS

3.1. Bayesian formulation of B-VMP

In a Bayesian framework, the goal is to maximize the posterior 
distribution given the observed value p(x, α|y) = p(y, x, α)/p(y). 
However, this posterior distribution is intractable for exact cal-
culation in practice because p(y) = ∫ ∫

p(y, x, α)dxdα cannot be 
integrated in closed form.

In this paper, a variational inference approach [17] is introduced 
to achieve Bayesian inference. We denote by V = {y} and H =
{x, α} the visible data and the hidden variables in the Bayesian 
network, respectively. Then, the goal is to find a tractable varia-
tional distribution Q (H) that closely approximates the true poste-
rior distribution p(H |V ). The log marginal probability of the ob-
served data can be split into two terms:

ln p(V ) = L(Q ) + KL(Q ||P ) (12)

where

L(Q ) =
∫

Q (H) ln
p(H, V )

Q (H)
dH (13)

KL(Q ||P ) = −
∫

Q (H) ln
p(H|V )

Q (H)
dH (14)

Here, KL(Q ||P ) is the Kullback–Leibler divergence between p(H |V )

and the approximation Q (H). Because KL(Q ||P ) ≥ 0 holds, L(Q )

forms a lower bound on p(V ), and maximizing L(Q ) is equiva-
lent to minimizing KL(Q ||P ). If Q (H) can have complete flexibil-
ity, maximizing L(Q ) leads to the true posterior Q (H) = p(H |V ). 
However, this approach always leads to computational intractabil-
ity. A commonly used variational distribution Q (H) has a factor-
ized form Q (H) = Q (x)Q (α) in which disjoint groups of variables 
are independent. In variational message passing, Q (x) and Q (α)

are updated iteratively to monotonically decrease the KL diver-
gence.

1) Update of Q (α): According to [17], we have

ln Q i(αi) = 〈
ln p(xi|αi)

〉
Q (xi)

+ ln p(αi |a,b) + const (15)

where the subscript Q (xi) denotes an expectation with respect to 
Q (xi). Substituting (6) and (7) into (15), we have

ln Q i(αi) =
(

− 1
2 〈x2

i 〉Q (xi) − b

a − 1
2

)T

·
(

αi
lnαi

)
+ const (16)

The superscript T denotes the transpose operator. Thus, we can 
obtain
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