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We proposed an effective face recognition method based on the discriminative locality preserving vectors 
method (DLPV). Using the analysis of eigenspectrum modeling of locality preserving projections, we 
selected the reliable face variation subspace of LPP to construct the locality preserving vectors to 
characterize the data set. The discriminative locality preserving vectors (DLPV) method is based on the 
discriminant analysis on the locality preserving vectors. Furthermore, the theoretical analysis showed 
that the DLPV is viewed as a generalized discriminative common vector, null space linear discriminant 
analysis and null space discriminant locality preserving projections, which gave the intuitive motivation 
of our method. Extensive experimental results obtained on four well-known face databases (ORL, Yale, 
Extended Yale B and CMU PIE) demonstrated the effectiveness of the proposed DLPV method.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Over the last ten years or so, face recognition has become a 
popular area of research, which has a wide range of commer-
cial and law enforcement applications [1–4]. The problem of face 
recognition continues to attract researchers from disciplines such 
as image processing, pattern recognition, neural networks, com-
puter vision and psychology [5–10]. One of the most successful 
and well-studied techniques is the appearance-based method [24]. 
However, appearance-based methods used in face recognition may 
produce the curse of dimensionality [11]. A common way to re-
solve the problem is to use the dimensionality reduction technique. 
Many linear approaches have been proposed for dimensionality re-
duction, such as principal component analysis (PCA) [12] and linear 
discriminant analysis (LDA) [13,14], which have been widely used 
in visualization and classification. However, PCA does not encode 
discriminant information which is important for a recognition task, 
and LDA aims to preserve global structures of samples. Further-
more, PCA and LDA fail to explore the essential structure of data 
with nonlinear distribution.

Based on eigenspectrum modeling of PCA, null-space LDA 
(NLDA) was proposed for dealing with the small sample size prob-
lem [15]. In this method, PCA is applied to remove the null space 
of the total scatter matrix, which contains the intersection of the 
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null spaces of the between-class scatter matrix and the within-
class scatter matrix. Then, the optimal projection vectors are found 
in the remaining lower dimensional space by using the null space 
method. Cevikalp et al. proposed a face recognition method based 
on the discriminative common vectors method (DCV) [16] which 
yields an optimal solution by maximizing the modified Fisher’s 
linear discriminant criterion [17]. The linear methods mentioned 
above, however, may fail to find the underlying nonlinear structure 
of a data set. To remedy this deficiency, a number of nonlinear 
dimensionality reduction techniques have been developed in the 
past few years, among which two received increasing attention: 
kernel-based method and manifold learning based method. Kernel 
principal component analysis [18], generalized discriminant anal-
ysis [19], and kernel discriminative common vector [20] are the 
representative kernel based methods. However, the kernel based 
techniques are computationally intensive, and do not explicitly 
consider the local structure of a data set, which is important for 
classification.

Recently, a number of research efforts have shown that the face 
images possibly reside on a nonlinear sub-manifold [21–24] and 
many manifold learning-based approaches such as the isometric 
feature [25], locally linear embedding [26], and Laplacian eigen-
maps [21] have been developed for analyzing high dimensional 
data. Manifold learning methods are straight forward in finding 
the inherent nonlinear structure hidden in the observation space 
[27]. However, none of them explicitly considers the structure of 
the manifold on which the face images possibly reside. Locality 
preserving projections (LPP) [28] is a new linear dimensionality re-
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duction algorithm. LPP transforms different samples into new rep-
resentations using the same linear transform and tries to preserve 
the local structure of the samples. Based on LPP, some methods 
were further developed for face recognition, such as neighborhood 
preserving embedding (NPE) [29], Laplacian faces [30], orthogonal 
locality preserving projections (OLPP) [31], and Locality preserv-
ing indexing [32], providing encouraging performance. Although 
LPP is effective in many domains, it suffers from a limitation: it 
de-emphasizes discriminant information, which makes it unsuit-
able for a recognition task. In other words, for a classification 
problem, the locality quantity itself is not sufficient. To encode dis-
criminant information, discriminant locality preserving projections 
(DLPP) has been mentioned [33]. However, similar with LDA, DLPP 
also suffers from the small sample size problem. Developed from 
the DLPP, null space discriminant locality preserving projections 
(NDLPP) [34] inherits the characteristics of DLPP that encodes both 
the geometrical and discriminant structure of the data, and ad-
dresses the small sample size problem by solving an eigenvalue 
problem in null space.

Inspired by LPP and DCV, we proposed a new method, termed 
as discriminative locality preserving vectors (DLPV), for face recog-
nition. Based on the analysis of eigenspectrum modeling of super-
vised locality preserving projections (LPP) [35,36], we selected the 
reliable face variation subspace of supervised LPP to obtain the 
locality preserving vectors (LPV). The discriminative locality pre-
serving vectors (DLPV) is based on the discriminant analysis on 
the LPV. Furthermore, we present a theoretical analysis of DLPV 
and its connections with NLDA, DCV and NDLPP.

The remainder of this article is organized as follows: the related 
works are described in Section 2. DLPV method and its theoretical 
analysis are presented in Section 3. Experimental results and anal-
ysis are presented in Section 4. Finally, conclusions are given in 
Section 5.

2. Related works

In this section, we will briefly review null space based linear 
discriminant analysis (NLDA), discriminant common vectors (DCV), 
locality preserving projections (LPP), and null spaced discriminant 
locality preserving projections (NDLPP) since our proposed DLPV 
stems from these methods.

2.1. Null space based linear discriminant analysis (NLDA)

Null space based linear discriminant analysis (NLDA) uses the 
within-class and between-class scatter matrix of the samples to 
obtain the projection vectors and its objective function as follows:

J (wNLDA) = arg max
|w T SW w|=0

∣∣w T S B w
∣∣ (1)

where,

S B =
c∑

i=1

ni(mi − m̄)(mi − m̄)T (2)

SW =
c∑

i=1

( ni∑
j=1

(
xi

j − mi)(xi
j − mi)T

)
(3)

where m̄ is the total sample mean vector, ni is the number of sam-
ples in the ith class, mi is the average vector of the ith class, 
c is the number of classes, and xi

j is the jth sample in the ith 
class. We call SW and S B the within-class scatter matrix and the 
between-class scatter matrix respectively. To find the optimal pro-
jection vectors w in the null space Q of the within-class scatter 
matrix SW , NLDA projects the face samples onto the null space of 
SW and then obtains the projection vectors by performing PCA.

2.2. Discriminative common vectors (DCV)

DCV projects the face samples onto null space Q of SW and 
then obtains the projection vectors by performing PCA. An efficient 
way to accomplish this task is by using the orthogonal comple-
ment of the null space of SW , which typically is a significantly 
lower-dimensional space. The method can be summarized as fol-
lows:

Step 1: Choose any sample from each class and project it onto 
the null space Q of SW to obtain the common vectors

xi
com = Q Q T xi

j, j = 1, . . . ,ni, i = 1, . . . , c

Step 2: Compute the eigenvectors w of Scom = Acom AT
com , where 

Acom = [x1
com − x̄com −· · ·−xl

com − x̄com], and where x̄com is the mean 
of all common vectors.

2.3. Locality preserving projections (LPP)

PCA and LDA aim to preserve the global structure. However, in 
many real-world applications, the local structure is more impor-
tant. LPP seeks to preserve the intrinsic geometry of the data and 
local structure. The objective function of LPP is as follows [28,30]:

min
∑

i j

(yi − y j)
T Si j (4)

where yi = w T xi is the one-dimensional representation of origi-
nal data vector xi and the matrix S is a similarity matrix, which 
can be Gaussian weight or uniform weight of Euclidean distance 
using k-neighborhood or ε-neighborhood. A possible way of defin-
ing S is Sij = exp(−‖xi − x j‖2/t) (t is the heat kernel parameter), 
if xi is among k nearest neighbors of x j or x j is among k nearest 
neighbors of xi ; otherwise, Sij = 0. Here we assume that k is the 
number of neighbors. The justification for this choice of weights 
can be traced back to [28,30].

The minimization problem becomes

w = min
∑
i, j

(
w T xi − w T x j

)2
Sij

= 1

2
tr

(∑
i j

(
W T xi − W T x j

)(
W T xi − W T x j

)T
Si j

)

= tr

(∑
i

W T xi Diixi W −
∑

i j

W T xi Si jx j W

)

= tr
(
W T X(D − S)X W

) = tr
(
W T X L X T W

)
(5)

with the constraint w T X D X T w = 1, where D is a diagonal matrix 
whose entries are column (or row) sums of S , Dii = ∑

j S ji , and 
L = D − S .

The optimal projection axis w is given by solving the general-
ized eigenvalue problem:

X L X T w = λX D X T w (6)

where λ is the eigenvalues.
The objective function of LPP considers the difference between 

any two face images, which may belong to the same individual or 
different individuals. It is obvious that LPP subspace concentrates 
on both the intrinsic difference and transformation difference.

2.4. Null space discriminant locality preserving projections (NDLPP)

Discriminant locality preserving projections (DLPP) encodes 
both the geometrical and discriminant structure of the data mani-
fold. The objective function of DLPP is

J = max

( ∑c
i, j=1(mi − m j)Bij(mi − m j)

T∑c
l=1

∑nc
i, j=1(yl

i − yl
j)Sij(yl

i − yl
j)

T

)
(7)
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