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Image denoising plays an important role in image processing, which aims to separate clean images from 
the noisy images. A number of methods have been presented to deal with this practical problem in 
the past decades. In this paper, a sparse coding algorithm using eigenvectors of the graph Laplacian 
(EGL-SC) is proposed for image denoising by considering the global structures of images. To exploit 
the geometry attributes of images, the eigenvectors of the graph Laplacian, which are derived from the 
graph of noised patches, are incorporated in the sparse model as a set of basis functions. Sequently, the 
corresponding sparse coding problem is presented and efficiently solved with a relaxed iterative method 
in the framework of the double sparsity model. Meanwhile, as the denoising performance of the EGL-
SC significantly depends on the number of the used eigenvectors, an optimal strategy for the number 
selection is employed. A parameter called as out-of-control rate is set to record the percentage of the 
denoised patches that suffer from serious residual errors in the sparse coding procedure. Thus, with 
the eigenvector number increasing, the appropriate number can be heuristically selected when the out-
of-control rate falls below an empirical threshold. Experiments illustrate that the EGL-SC can achieve 
a better performance than some other well-developed denoising methods, especially in the structural 
similarity index for the noise of large deviations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Image denoising plays an important role in image processing. 
It is viewed as an inverse problem in which clean images are es-
timated from the noisy images. A number of methods have been 
presented to deal with this practical problem in the past decades 
[1–4]. However, with the advances of sparse signal representation, 
more algorithms are efficiently proposed to resolve this problem 
[5–7]. It has already been proven that, compared with the tradi-
tional image denoising methods, these sparse representation algo-
rithms are useful to improve image quality.

In brief, the basic idea of denoising methods via sparse repre-
sentation can be described in two steps. First, image patches are 
approximately expressed by a linear combination of a few atoms 
taken from the dictionary. Second, clean images are separated from 
noise which is generally not compatible to the sparse assumption. 
Early denoising methods, e.g., K-means singular value decomposi-
tion (K-SVD) algorithm [8], usually treat the denoising problem as 
a pure approximation task, in which each patch is respectively es-
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timated without consideration of the spatial redundancy to others. 
Therefore, these methods can be viewed as local methods for the 
neglect of the relationship among patches. Lately, numerous non-
local denoising methods are developed to exploit such relationship. 
For example, one idea is to tie the sparse coefficients one to the 
other to deal with the deterioration of noisy images. Some con-
straints, i.e., grouping [9], clustering [10] and context-awareness 
[11], are used and very often applied in the sparse model as regu-
larization terms. According to this idea, a so-called nonlocally cen-
tralized sparse representation method is recently presented, which 
centralizes sparse coefficients into various categories, and achieves 
the comparable performances with the block-matching and 3D fil-
tering (BM3D) method [12–14].

On the other hand, though graph theory has been successfully 
employed in a variety of image applications, recent reports are 
further proven that it can be efficiently performed with sparse 
representation [15–17]. For example, various manifold regular-
ized sparse coding methods, e.g., graph Laplacian [18], hypergraph 
Laplacian [19] and multi-modal sparse codings [20], are presented 
in image clustering, in which the graph Laplacian matrix is viewed 
as a useful tool to exploit the geometrical structures for image data 
[21–23]. As for image denoising via sparse representation, reports 
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show that the denoising performance can be well improved by 
introducing the graph Laplacian. The corresponding sparse model 
is also proposed to regularize sparse coefficients via a manifold 
embedding term [24,25]. Generally, these graph-based denoising 
methods can be treated as non-local methods, in which the graph 
networks of pixels or patches are usually provided. Furthermore, 
very recently, a denoising method with the eigenvectors of the 
graph Laplacian (EGL) is developed to take advantage of the at-
tributes of the eigenvectors [26]. In this method, the eigenvectors 
of the graph Laplacian of patches do not only represent the global 
structures of images, but also can be utilized as a set of basis 
functions to reconstruct images. Moreover, to enhance the denois-
ing performance, only a certain part of the eigenvectors is used, 
where the number of these eigenvectors is experimentally set for 
each image and for the noise of each deviation, respectively. The 
corresponding experiments show the EGL can outperform several 
classical denoising methods including the K-SVD.

Motivated by recent progress, we propose a sparse coding algo-
rithm using eigenvectors of the graph Laplacian (EGL-SC) for image 
denoising. The major contribution of our work relies in two as-
pects. First, the eigenvectors of the graph Laplacian of patches are 
employed in the sparse model to exploit the global structures of 
the noisy image. The eigenvector-based sparse coding problem is 
also presented, where a relaxed iterative solution is provided in 
the framework of the double sparsity model. Second, an optimal 
strategy is adopted to find the corresponding appropriate numbers 
of the eigenvectors adaptively for various images and for various 
noise deviations to further improve the denoising performance.

The rest of this paper is organized as follows. Some related 
work is reviewed in Section 2. The sparse coding algorithm us-
ing eigenvectors of the graph Laplacian is introduced in Section 3. 
Simulation results are presented in Section 4. Relevant conclusions 
and discussions are finally given in Section 5.

2. Related work

2.1. Sparse coding

In general, sparse representation can be classified in two tasks, 
i.e., dictionary learning and sparse coding (a.k.a. sparse approxi-
mation) [27,28]. The target of dictionary learning is to search an 
optimal signal space to support the attribution of a sparse vector 
under a certain measure. As for sparse coding, it is dedicated to 
find a sparse solution to an underdetermined linear system.

Given a measurement data matrix Y = [y1 y2 . . . yN ], yi ∈R
m , 

the basic sparse coding problem can be described as two forms 
which are subject to the sparsity and residual error constraints 
respectively. The sparse coding problem under the residual error 
constraint is expressed as

x̃i = arg min
xi

‖xi‖0 s.t. ‖yi − Dxi‖2
2 ≤ ε, i = 1,2, . . . , N, (1)

where D = [d1 d2 . . . dK ] is the dictionary with the atoms {di}, 
di ∈ R

m , X = [x1 x2 . . . xN ] is the coefficient matrix with the 
sparse coefficients {xi}, xi ∈R

K , ε is a threshold of the residual er-
ror. In the image denoising application, each yi represents a noisy 
image patch and N is the number of the total patches. Here, the 
number of the entries in yi is set to be smaller than the number 
of the atoms, i.e., m < K . The dictionary is assumed to be a full-
rank matrix. Thus, the solution of problem (1) is always available, 
where the residual error constraint only provides a searching area 
for xi .

Note that, problem (1) is formulated as an l0-norm optimization 
problem, which is NP-hard. To deal with this problem, some greedy 
algorithms, e.g., matching pursuit [29] and orthogonal matching 

pursuit (OMP) [30], are successfully developed to achieve the ap-
proximated solution. However, in practice, this l0-norm problem 
can be very often transformed into an l1-norm problem, wherein 
the dictionary is in the control of the corresponding mutual inco-
herence [31]. Therefore, a number of effective algorithms, such as 
basis pursuit [32], iterative shrinkage [33] and split Bregman [34], 
are proposed to tackle the l1-norm based sparse coding problems 
in different forms.

2.2. Denoising method with eigenvectors of the graph Laplacian

As for the EGL method, the main idea is to restore clean patches 
from noisy ones on a basis set of the eigenvectors of the graph 
Laplacian. More specifically, a patch-based undirect graph is firstly 
built on Y by using the k-nearest neighbors approach. Lately, 
a complex measure on the similarities and the location positions 
of patches is introduced as

d(i, j) = ‖yi − y j‖2 + β
∥∥c(i) − c( j)

∥∥
2, (2)

where d(i, j) is the complex measure for the patch pair (yi, y j), 
β is a weighted coefficient and c(i) represents the location posi-
tion of yi . Thus, the weight matrix W can be constructed with its 
entries expressed as

wi, j =
{

e−d2(i, j)/δ2
if yi is connected to y j

0 otherwise
, (3)

where δ is a scaled coefficient. The normalized Laplacian matrix L , 
L ∈R

N×N , is sequently obtained as

L = I − B−1/2W B−1/2, (4)

where I is an identity matrix, B is a diagonal matrix and its di-
agonal entries are the row sums of W . Since the Laplacian matrix 
L is symmetric and positive semidefinite, its eigenvalues can be 
represented as {λi}N

i=1, which are arranged in an ascending order 
with the first eigenvalue λ1 = 0. The corresponding eigenvectors 
are given as {ui}N

i=1, ui ∈ R
N .

To deal with image denoising, the estimated measurement ma-
trix Ỹ is represented as

Ỹ = (Y U )U T , (5)

where U = [u1 u2 . . . uM ] is a basis matrix with the first M eigen-
vectors. In (5), each row of Y is projected into a subspace spanned 
by the vectors of U , and the estimation Ỹ is reconstructed on such 
subspace.

In practice, the EGL employs an iterative procedure to deal with 
the noisy image, which is divided into two major stages. In the first 
stage, a rough image as a lowpass version of the clean image is es-
timated by using a very small number of the eigenvectors of the 
graph Laplacian from the noisy image. Lately, an intermediate im-
age is constructed with a weighted average of the noisy and rough 
images. In the second stage, the denoised image is restored from 
the intermediate image by the corresponding eigenvectors. Here, 
the number of the eigenvectors used in second stage is heuristi-
cally set, which are fluctuated for various images and for noise of 
various deviations. In other words, to achieve a better denoising 
performance, the appropriate eigenvector number should be triv-
ially tested for each image and for noise of each deviation, which 
may lead the EGL to be less effective.

3. Proposed algorithm

3.1. Sparse coding using eigenvectors of the graph Laplacian

We present the EGL-SC algorithm for image denoising. As an 
attempt to fully exploit the eigenvectors of the graph Laplacian, 
we modify the sparse coding problem (1) as
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