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In this work we propose a novel framework to obtain high resolution images from compressed sensing 
imaging systems capturing multiple low resolution images of the same scene. The proposed approach 
of Compressed Sensing Super Resolution (CSSR), combines existing compressed sensing reconstruction 
algorithms with a low-resolution to high-resolution approach based on the use of a super Gaussian 
regularization term. The reconstruction alternates between compressed sensing reconstruction and 
super resolution reconstruction, including registration parameter estimation. The image estimation 
subproblem is solved using majorization-minimization while the compressed sensing reconstruction 
becomes an l1-minimization subject to a quadratic constraint. The performed experiments on grayscale 
and synthetically compressed real millimeter wave images, demonstrate the capability of the proposed 
framework to provide very good quality super resolved images from multiple low resolution compressed 
acquisitions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Compressed Sensing (CS) theory offers a framework to simulta-
neously sense and compress signals. It establishes that a sparsely 
representable image/signal can be recovered from a highly incom-
plete set of measurements [1–3].

The design of CS image/video cameras (see [4–8]) has fostered 
the application of typical image processing tasks to CS observed 
images. CS has been applied to areas like radar analysis, face recog-
nition, biomedical imaging, and microscopy imaging techniques [2,
9,10], among others. CS measurements have also been used to re-
cover images observed through unknown blur [11,12].

Super Resolution (SR) from a single image has also benefited 
from the introduction of CS theory. In [13,14] learning based SR 
is used to estimate a High Resolution (HR) image from the CS 
observation of a downsampled remote sensing image. In [15] the 
downsampling is incorporated in the measurement matrix, the CS 
image is reconstructed in the wavelet domain and the signal is de-
convolved in the Fourier domain.
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The recovery of an HR image from a set of unregistered LR CS 
observations has been scarcely addressed in the literature. To the 
best of our knowledge, the only reported works treating this gen-
eral SR problem are [16,17]. In these papers CS and LR to HR tech-
niques are coupled, using a fast and simple registration method, 
which uses the reconstructed HR images instead of the LR ones 
[17]. A non-robust prior model on the original image to be recon-
structed was used in both papers.

This paper also deals with the reconstruction of an HR image 
from a group of LR CS observed images. The proposed method 
assumes that the HR image to be estimated is compressible and, 
consequently, its warped, blurred, and downsampled versions are 
also compressible (see [11,12]). They can then be reconstructed 
from their CS observations. However, instead of first recovering the 
LR observations and then using LR to HR techniques we propose a 
combined framework where LR reconstructions and HR estimation 
are carried out simultaneously. This proposed method is based on 
a sound and well founded method to estimate registration param-
eters in LR to HR problems and the use of a new robust sparse 
promoting prior for the original image.

The proposed framework has been tested, in the experimental 
section, on CS grayscale and Passive Millimeter Wave (PMMW) im-
ages. Without using CS measurements, the improvement of Passive 
Millimeter Wave (PMMW) images to perform detection tasks has 
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been addressed in [18–22], and the use of CS techniques to re-
duce the time needed to capture such images has been addressed 
in [5,6,23,24]. In [17], high resolution images were super resolved 
for the first time, from multiple CS observations of unregistered LR 
PMMW images. We believe that PMMW images represent an im-
portant application area where CS and LR to HR techniques can be 
combined to enhance the detection capabilities of current PMMWI 
systems.

Before going into details, the more frequently used notation in 
the paper is listed next

yq M × 1 compressed observation vector q ∈ {1, · · · , Q }
� M × D CS measurement matrix
zq D × 1 the q-th LR image vector
rq D × 1 CS observation noise vector
A D × N down-sampling matrix
P zooming factor
Hq N × N blurring matrix
C(sq) N × N warping matrix formed by motion vector sq

sq 3 × 1 motion vector (rotation θq , horizontal cq , and verti-
cal dq displacements)

x N × 1 HR image vector
wq D × 1 HR to LR acquisition noise vector
Bq(sq) D × N LR acquisition model matrix
aq(sq),bq(sq) N × 1 pixel difference vectors
Daq(sq) N × N diagonal matrix with aq(sq) in the diagonal 

Dbq(sq) : bq(sq) in the diagonal
I the identity matrix
Lbl(sq) bottom-left-pixel matrix (br, tl, tr): (bottom-right, top-

left, top-right)
nq M × 1 combined CS and LR acquisition noise vector
W D × D transformation matrix
aq D × 1 transformation coefficient vector
α,β,η, τ non-negative parameters
Q(x) regularization term
ωx

d filtered image applying Fd on x in d-direction
λq D × 1 Lagrangian multiplier vector

The rest of this paper is organized as follows. The problem 
modeling and its formulation as an optimization task are pre-
sented in Sections 2 and 3, respectively. The estimation process 
is described in Section 4. We demonstrate the effectiveness of the 
proposed method in the experimental section, Section 5. Finally, 
conclusions are drawn in Section 6.

2. Modeling

In this work we assume that we have access to a set of Q CS 
LR observations of the form

yq = �zq + rq q = 1, . . . , Q , (1)

where yq is an M × 1 vector representing compressed observations 
from the LR image zq , � is a CS M × D measurement matrix, zq is 
a column vector of size D × 1 representing the q-th LR image and 
rq represents the observation noise. We denote by R the compres-
sion ratio of the measurement system, that is R = M/D , R ≤ 1. The 
sensing matrix � consists of either real or binary entries. The ma-
trix used in our work is binary, since it is easier to be synthesized 
physically [6,23,24]. In both cases the rows/columns of � are nor-
malized to 1. We assume that the LR observations zq are related to 
an HR image of size N, denoted by the column vector x by

zq = AHqC(sq)x + wq = Bq(sq)x + wq, (2)

where A is a D × N down-sampling matrix, D ≤ N , which models 
the limited resolution of the acquisition system, when capturing 

the high resolution image, where N = P 2 D and P ≥ 1 is the zoom-
ing factor, in each dimension of the image. Hq is an N × N blurring 
matrix, modeling the action accompanying the imaging process. In 
this work, Hq is assumed to be known. C(sq) is the N × N warping 
matrix formed by motion vector sq = [θq, cq,dq]t , where θq is the 
rotation angle, and cq and dq are respectively the horizontal and 
vertical translations of the q-th LR image with respect to the ref-
erence frame. Finally, wq models the noise associated to the HR to 
LR acquisition process. We write Bq(sq) = AHqC(sq) for simplicity.

As explained in [25], matrices C(sq) can be explicitly stated as 
follows. Let us denote the coordinates of the reference HR grid by 
(u, v) and the coordinates of the qth warped HR grid, after apply-
ing C(sq) to x, by (uq, vq). Then it holds that

uq = u cos(θq) − v sin(θq) + cq (3)

vq = u sin(θq) + v cos(θq) + dq . (4)

Let us denote the displacements between the grids by
�(uq, vq)

T = (u, v)T − (uq, vq)
T . The vector difference between 

the pixel at (uq, vq) and the pixel at its top-left position in the 
reference HR grid is denoted by (aq(sq), bq(sq))

T (see Fig. 1), that 
is,

aq(sq) = �uq − floor(�uq) , (5)

bq(sq) = �vq − floor(�vq) . (6)

Using bilinear interpolation, the warped image C(sq)x can be 
approximated as

C(sq)x ≈ Dbq(sq)(I − Daq(sq))Lbl(sq)x + (I − Dbq(sq))Daq(sq)Ltr(sq)x

+ (I − Dbq(sq))(I − Daq(sq))Ltl(sq)x

+ Dbq(sq)Daq(sq)Lbr(sq)x , (7)

where Daq(sq) and Dbq(sq) denote diagonal matrices with the vectors 
aq(sq) and bq(sq) in their diagonals, respectively. I is the identity 
matrix. Matrices Lz with z ∈ {bl(sq), br(sq), tl(sq), tr(sq)} are con-
structed in such a way that the product Lzx produces pixels at 
the bottom-left, bottom-right, top-left, and top-right, locations of 
(uq, vq), respectively.

Using (1) and (2) we can write

yq = �Bq(sq)x + nq , for q = 1, . . . , Q , (8)

where nq represents the combined CS and LR acquisition noise and 
x is the HR image we want to estimate.

3. Problem formulation

Since zq in (2) represents translated and rotated LR versions 
of the original image x (which are assumed to be compressible 
in a transformed domain), we can estimate the original HR image 
by first recovering the LR images using CS techniques and then 
recover the HR image using standard super resolution techniques 
on the recovered low resolution images. To be precise, if we as-
sume that the LR images are sparse in a transformed domain with 
zq = Waq , where W is a sparse promoting transformation of size 
D × D , we can recover them from the model in (1) by solving

âq = arg min
aq

η

2
‖ �Waq − yq ‖2 + τ ‖ aq ‖1, (9)

where η, τ are regularization parameters, ‖ . ‖ is the Euclidean 
norm, and ‖ . ‖1 the �1 norm. Then defining ẑq = Wâq and s =
(s1, . . . , sQ ) and using the degradation model (2), we can estimate 
the original image by solving

x̂, ŝ = arg min
x,s

β

2

∑
q

‖ Bq(sq)x − ẑq ‖2 + α Q(x), (10)
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