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The nested array structure has attracted great attention recently due to its ability in reducing the number 
of sensors in an array and at the same time preserving the array performance. While a uniform linear 
array (ULA) can detect at most N −1 sources with N sensors, a nested array can provide O(N2) degrees of 
freedom with the same number of sensors; allowing us to detect K sources with K > N sensors. Direction 
of arrival (DOA) estimation in a conformal array is a challenging task. In this article, by breaking the 
conformal array into smaller sub-arrays and using an interpolation technique, we employ the nested array 
principles to detect more number of sources than sensors. This comes at the cost of more snapshots and 
lower resolution, in the DOA estimation of an arbitrarily-shaped conformal array. Each sub-array in the 
conformal array is selected such that the “shadow effect” which leads to an incomplete steering vector 
in the DOA estimation algorithm is eliminated. The selected sub-arrays are then transformed to virtual 
nested arrays where more degrees of freedom can be obtained by applying the MUSIC algorithm for DOA 
estimation. The application of our proposed method is highlighted by considering a set of comprehensive 
examples for cylindrical and spherical arrays.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A conformal antenna array is an array with its antennas con-
formed to its bearing surface. Due to this flexibility, conformal 
arrays have found great applications in many modern defense and 
wireless communication systems [1,2]. Unfortunately, the existing 
beamforming and direction-of-arrival (DOA) estimation algorithms 
which have been developed for conventional planar arrays can-
not be directly applied to conformal arrays since these algorithms 
assume elements with identical patterns which is not valid in con-
formal arrays. Due to the curvature of the bearing surface, each 
element in a conformal array has a far-field contribution in the 
direction of the incident signals which is different from the con-
tributions of other elements. This means that, unlike conventional 
planar arrays, one cannot separate the element pattern from the 
array factor in the analysis of a conformal array [1]. To use high 
resolution DOA estimation algorithms such as MUSIC [3] or ESPRIT 
[4] for arrays with arbitrary geometries, interpolation techniques 
have been employed by some authors [5–13]. The interpolation 
technique is a method which enables us to map an array with 
M sensors to an array with N ≥ M virtual sensors. The manifold 
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matrix of a non-uniform planar array is, in general, not Vander-
monde. By using array interpolation, a virtual uniform planar array 
is generated which ensures obtaining a Vandermonde matrix. Par-
ticularly, in [13] a DOA estimation method for conformal arrays is 
proposed which uses the interpolation technique to transform a 
conformal array into a uniform linear array (or a uniform planar 
array). By applying LS-ESPRIT, 2D-DFT ESPRIT and MUSIC algo-
rithms to the interpolated array the authors in [13] have shown 
that this method can identify the DOA of different sources with 
great accuracy for different conformal array geometries. Array in-
terpolation has also been applied to both narrowband and wide-
band signals [5–11].

The number of signals that can be detected by conventional ar-
rays is always less than the number of array sensors, e.g. an array 
with N sensors can resolve at most N − 1 sources [14]. However, 
in many applications, while the size of the array is limited, it is 
required to detect more number of signals than the number of el-
ements. Such examples can be found, for example, in Unmanned 
Aerial Vehicles (UAV). UAVs are highly mobile units that can be 
employed as safe and efficient communication relays for vari-
ous surveillance, reconnaissance, and other tactical missions [15]. 
While increasing the degrees of freedom (DOF) in the array of a 
UAV can increase its performance, the physical size and the weight 
of the array is a limiting factor.
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Different methods have been proposed so far in order to in-
crease the DOF of conventional arrays [16–20]. A large number of 
such methods use the sparse array structure [16–20]. A sparse ar-
ray is a uniform array where certain fractions of its elements have 
been removed randomly. A sparse array has a large variation in its 
peak sidelobe level. Hence, optimization techniques must be used 
to remove appropriate elements to have a good sidelobe behavior 
[16–18]. These sparse arrays, also called thinned arrays, are de-
signed under specific considerations such as a particular radiation 
pattern or impedance matching of the array elements [19,20].

Minimum redundancy arrays (MRA) constitute a sub-group of 
sparse arrays, which use the idea of co-array design to increase 
the DOF [21–24]. Co-array theory is based on the fact that the dif-
ference of element positions in an array structure appears in the 
signal correlation matrix [25]. MRAs provide more DOF both by re-
ducing the number of elements and by manipulating the received 
signals in order to extract the missing data of the removed ele-
ments. The main drawback of the minimum redundancy arrays is 
that they do not have a closed form expression for the array ge-
ometry and the achievable DOF.

Another group of sparse arrays, the so-called co-prime array, 
was proposed and developed in [26,27], using Nc1 + Nc2 sensors 
to obtain O(Nc1 Nc2) degrees of freedom for DOA estimation where 
Nc1 and Nc2 are co-prime numbers. In co-prime arrays, two sepa-
rate ULAs with element spacing dNc1 and dNc2 are placed together 
on a row where the difference of the element positions forms a 
uniform spatial sampling with the aid of the co-array theory.

The newly proposed structure, namely the nested array, can 
overcome the issues of the MRAs and at the same time can achieve 
O(N2) degrees of freedom using N sensors by combining two or 
more Uniform Linear Arrays (ULA) with increasing inter-element 
spacing [28]. Furthermore, compared to a co-prime array, a nested 
array requires less number of sensors to achieve the same DOF. By 
using the co-array theory, a nested array can achieve more DOF but 
it is at the cost of lower detection resolution compared to conven-
tional methods with the same number of snapshots because the 
finite sample size of the signals can have more negative impact on 
the accuracy of the covariance matrix in a nested array than a con-
ventional array. This is an inherent problem of nested arrays and 
has also been reported in previous literature [28,29].

This issue has been mitigated recently by exploiting the nu-
merous iterations of subsets of the whole data set in both nested 
arrays and co-prime arrays [30]. Due to these prominent features, 
the nested array structure has been recently extended from one-
dimensional arrays to two-dimensional arrays [29,31] and from 
narrowband sources to wideband signals [32].

Our aim in this article is to increase the DOF in the DOA es-
timation of a conformal array to detect more number of sources 
than the sensors, thereby improving the performance of a confor-
mal array. For this purpose, we map the given conformal array to 
a corresponding linear or planar nested array using the interpo-
lation technique. First, the desired spatial angle in the conformal 
array is divided into small sectors to reduce the interpolation er-
ror and eliminate the shadow effect. The shadow effect appears 
when some of the elements of the conformal array are not able 
to receive the incoming signals due to the curvature of the ar-
rays. Each sector is then transformed, by means of an appropriate 
transformation matrix, into a corresponding virtual nested array. 
This transformation is also applied to the impinging signals on the 
conformal array. Next the conventional high resolution DOA esti-
mation algorithms can be applied to each virtual nested array to 
provide more DOF. Selecting the size of each sub-array and the 
number of elements in its corresponding nested array are design 
parameters that determine the accuracy of the DOA estimation. In 
summary, our approach includes two steps: a) a transformation 
from conformal geometry to a virtual linear (planar) array geom-

etry, b) increasing the DOF by applying the nested array principle 
to this virtual linear (planar) array.

The organization of the paper is as follows. The next section 
briefly reviews the nested array principles and its associated spa-
tial smoothing technique and shows how this structure can in-
crease the DOF in both 1D (linear) and 2D (planar) arrays. In 
section 3, the “shadow effect” problem in a conformal array is 
discussed. Section 4 presents our approach to develop the nested 
array structure to a conformal array and shows how the detected 
number of sources can be increased in the DOA estimation based 
on this new design. Simulation results are presented in Section 5
for a cylindrical conformal array as a typical example for the 1D 
case and a spherical conformal array as a typical example for the 
2D case. Finally, Section 6 concludes the paper.

2. Nested array principles

Nested arrays are a subgroup of sparse arrays and use the co-
array theory to increase the DOF. Since the distribution of the 
sensors in a nested array is non-uniform, we need to first consider 
the signal model in a non-uniform 1D (linear) array.

We will use bold lowercase and uppercase characters to de-
note vectors and matrices, respectively. The symbol (.)∗ denotes 
the conjugate operator, (.)T the transpose operator, and (.)H the 
conjugate transpose operator. N is used for the number of sensors 
in a nested array and M is used for the number of sensors in a 
conformal array. Since in our case, the nested array is a virtual ar-
ray whereas the conformal array is the actual (physical) array we 
use two different symbols for referring to their sensors.

2.1. Non-uniform linear array

Consider an N element non-uniform linear antenna array. Let 
a(θ) denote the N × 1 steering vector corresponding to the direc-
tion θ defined as [28],

a(θ) = [
e j( 2π

λ
)d1 sin θ e j( 2π

λ
)d2 sin θ . . . e j( 2π

λ
)dN sin θ

]T
(1)

where di denotes the position of the ith sensor and λ is the sig-
nal wavelength. Suppose that D narrowband sources are imping-
ing on this array from directions {θd, d = 1, 2, . . . , D} with powers 
{σ 2

d , d = 1, 2, . . . , D}, respectively. We can write the received signal 
model as [28],

y(t) = Ax(t) + e(t) (2)

where y(t) = [y1(t) y2(t) . . . yN(t)]T is the vector of the received 
signals, A = [a(θ1) a(θ2) . . . a(θD)] is an N × D matrix which repre-
sents the array manifold, and x(t) = [s1(t) s2(t) . . . sD(t)]T denotes 
the source signal vector. The impinging signals are assumed to be 
uncorrelated with each other. The channel noise e(t) is assumed 
to be temporally and spatially white and uncorrelated from the 
source with the covariance of σ 2

e I. From (2), the autocorrelation 
matrix Ryy = E[yyH] of the received signal is written as [28],

Ryy = ARxxAH + σ 2
e I = A�AH + σ 2

e I (3)

where Rxx represents the covariance matrix of the sources, � is a 
diagonal matrix with signal powers at its diagonal elements and I
denotes the identity matrix.

2.2. 1D nested array structure

A simple 1D nested array is a non-uniform linear array consist-
ing of two concatenated ULAs as it is shown in Fig. 1 [28]. With 
N sensors, the first ULA has N1 sensors with interelement spacing 
d1 = λ/2 and the second ULA has N2 sensors with interelement 
spacing d2 = (N1 + 1)d1 [28].
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