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In this paper, a novel localization algorithm for mixed far-field and near-field sources is proposed in 
the presence of unknown mutual coupling. Based on the principle of rank reduction, direction-of-arrival 
(DOA) estimates of far-field sources are firstly decoupled under unknown mutual coupling. Then these 
estimates are employed to generate the mutual coupling coefficients. Finally, by the mutual coupling 
compensation and the far-field components elimination, near-field sources parameters (DOA and range) 
are obtained. The proposed algorithm is efficient in that it only requires second order statistics and 
one dimensional spectral search. Simulation results demonstrate that our algorithm is effective for the 
classification and localization of mixed sources under unknown mutual coupling.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Source localization using sensor array techniques have received 
considerable attention over the past decades. Most of the existing 
algorithms concentrate on far-field (FF) radiating sources, whose 
wavefronts are plane waves. Many high resolution algorithms have 
been proposed for the direction-of-arrival (DOA) estimation under 
the FF assumption, such as multiple signal classification (MUSIC) 
method [1], the estimation of signal parameters via rotational in-
variance technique (ESPRIT) [2], and their derivatives [3,4]. These 
algorithms are generally based on the assumption of ideal array 
manifold which does not take the manifold mismatch into account, 
such as spherical wavefronts [5] and mutual coupling [6].

However, in many situations of interest, the radiating sources 
may lie in the near-field (NF) region of the array [7], where the 
wavefronts are spherical and both the DOA and the range pa-
rameters are needed to localize these sources [5]. Consequently, 
traditional FF DOA estimation algorithms would produce unreli-
able results for NF source localization. Fortunately, a bunch of 
NF source localization algorithms have been developed in re-
cent years, including the 2-D MUSIC algorithm [5], the covari-
ance approximation (CA) method [8,9], the weighted linear predic-
tion method [10], and the rank-reduction (RARE) type algorithms 
[11–15]. Moreover, both FF and NF sources may coexist in many 

* Corresponding author.
E-mail addresses: xiejian1986@gmail.com (J. Xie), hhtao@xidian.edu.cn (H. Tao), 

raoxuancom@163.com (X. Rao), hmlh@guet.edu.cn (J. Su).

practical applications, such as electronic surveillance, seismic ex-
ploration and speaker localization using microphone arrays. Most 
of the algorithms, which deal with pure NF or pure FF sources, 
may fail in the scenarios of mixed sources.

In recent years, a lot of algorithms have been developed for 
mixed source localization [16–22]. In [16], Liang et al. proposed 
a two-stage MUSIC (TSMUSIC) method, which is based on fourth-
order cumulant (FOC). However, TSMUSIC requires high computa-
tional load to construct cumulant matrices. In [17], a second-order-
statistics-based oblique projection MUSIC (OPMUSIC) algorithm is 
presented. Although this method is computationally efficient, it 
suffers from severe array aperture loss. Based on the generalized 
ESPRIT (GESPRIT) algorithm [11], Liu and Sun presented a GESPRIT-
like algorithm to alleviate the aperture loss and obtain a reason-
able classification result [20]. But its FF component elimination 
technique would bring extra estimation errors.

It is well-known that the mutual coupling effect between two 
elements is inversely proportional to their distance [6]. Unfortu-
nately, in all of the abovementioned mixed source localization 
algorithms, the inter-sensor spacing is constrained to be within
a quarter wavelength. In this scenario, the mutual coupling ef-
fect should no longer be ignored. Otherwise, without calibration, 
the performance of these algorithms might degrade substantially. 
Many mutual coupling models and corresponding DOA estimation 
algorithms have been presented with the FF assumption [6,23–28]. 
In [6], an iterative method is advanced to compensate both the 
mutual coupling effect and the gain and phase errors. However, it 
needs an initial estimate of the manifold perturbations. Based on 
the concept of auxiliary sensors, various middle subarray methods 
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Fig. 1. Symmetric ULA configuration for the proposed algorithm.

are adopted to estimate DOAs [23,24]. Although these methods re-
quire neither calibration sources nor iterations, they suffer from 
array aperture loss caused by setting auxiliary sensors. In [25], 
a FOC-based algorithm is presented to alleviate this aperture loss 
problem. Another important type of methods for DOA estimation 
under mutual coupling is based on RARE [26–28]. The main ad-
vantage of these methods is that the whole array aperture is fully 
utilized. Therefore, they are expected to offer a better estimation 
performance. Even though these algorithms are effective under the 
FF assumption, little attention has been paid for the mixed FF and 
NF localization problem.

In view of the previous analyses, most existing algorithms 
are faced with the following difficulties: 1) being able to local-
ize mixed sources successfully under unknown mutual coupling; 
2) reasonable classification of FF and NF sources; 3) avoiding mul-
tidimensional search and high order statistics; 4) avoiding param-
eter matching.

Aiming to solve these difficulties, we propose a novel Two Stage 
RARE (TSRARE) algorithm in this paper to localize mixed FF and NF 
sources with unknown mutual coupling effect. Based on the sym-
metric Toeplitz structure of the mutual coupling matrix (MCM), 
a RARE estimator is firstly formed to obtain the FF DOA estimates, 
which successfully decouple the multi-dimensional spectral search 
into a one-dimensional (1D) search. After mutual coupling com-
pensation, another covariance differencing RARE estimator is con-
structed to generate the NF DOA estimates, which is effective to 
eliminate the FF components. The Cramer–Rao bounds (CRBs) for 
this problem are also derived to evaluate the performance of the 
proposed algorithm.

The rest of this paper is organized as follows. In Section 2, the 
mixed FF and NF signal model under unknown mutual coupling 
is presented. The proposed method is described in Section 3. In 
Section 4, simulations are conducted to validate the performance 
of our method. We conclude this paper in Section 5. Finally, the 
CRBs are obtained in Appendix.

Throughout the paper, the complex conjugate, transpose, Her-
mitian transpose, pseudo-inverse are denoted by (·)∗ , (·)T , (·)H and 
(·)#, respectively. Im represents an m ×m identity matrix, and 0m,n

is an m × n zero matrix.

2. Signal model

Suppose that K independent narrowband sources (FF and NF) 
impinge upon a symmetric uniform linear array (ULA), as is shown 
in Fig. 1. This ULA is composed of N = 2M + 1 omnidirectional 
sensors, with the inter-element spacing being d. We assume that 
there are K1 sources in the FF and the rest K2 sources are in the 
NF, where K2 = K − K1.

We first formulate the received signal for an ideal array with-
out mutual coupling effects between the array sensors. Therefore, 
with the array center being the phase reference point, the signal 
received by the mth sensor can be modeled as

xm(t) =
K∑

k=1

sk(t)e jτmk + nm(t) (1)

where sk(t) represents the k-th signal, nm(t) is the additive noise. 
The phase shift associated with the k-th signal’s propagation time 
delay from the phase reference point to the mth sensor is denoted 
as τmk , which is of the form

τmk = 2π

λ

(√
r2

k + (md)2 − 2rkmd sin θk − rk

)
(2)

where θk represents the DOA of the k-th source, rk stands for the 
distance between the k-th source and the reference sensor, and λ
is the wavelength of the source wavefronts.

When the k-th source is in the FF, the distance rk between the 
array and the source is much greater than the array aperture size, 
and therefore τmk is adequately approximated by [1]

τmk ≈ −2πmd

λ
sin θk. (3)

However, in many applications, the source may lie in the NF 
region of the array, and rk is on the order of only a few array 
apertures. Therefore, the expression in (3) is no longer valid. For 
the NF source, τmk can be approximated by using the second-order 
Taylor expansion of (2) [8]

τmk ≈ −2π

λ
md sin θk + π(md)2

λrk
cos2 θk = mωk + m2φk (4)

where ωk are φk called electric angles and respectively defined as

ωk = −2πd

λ
sin θk (5)

φk = πd2

λrk
cos2 θk. (6)

Note that, in (6), as rk approaches to +∞, φk = 0. As a result, 
the FF source can be deemed as a limiting case of the NF one.

As discussed in [6], the mutual coupling coefficient (MCC) be-
tween two elements is inversely proportional to their distance (i.e., 
the coefficients between neighboring sensors are almost equal, and 
it can be approximated as zero when the two sensors are far 
apart). However, most mixed source localization algorithms con-
strain the inter-sensor spacing to be within a quarter wavelength. 
Therefore, the performance of these algorithms would degrade 
without compensating for mutual coupling.

Assume C denotes the N × N MCM of the ULA. It can be 
modeled as the following banded symmetric Toeplitz matrix with 
P + 1 nonzero MCCs [6], which are arranged in a P + 1 vector 
c = [1, c1, . . . , cP ]T = [1, cT

1 ]T .

C = toeplitz{c} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 c1 · · · cP 0 · · · 0

c1 1 c1
...

. . .
. . .

...
... c1 1

. . .
...

. . . 0

cP
...

. . .
. . .

. . .
... cP

0
. . .

...
. . . 1 c1

...
...

. . .
. . .

...
... 1 c1

0 · · · 0 cP · · · c1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

herein, toeplitz{c} symbolizes the construction of a symmetric 
Toeplitz matrix from the vector c.

Therefore, in a matrix form, the array output vector x(t) under 
mutual coupling can be modeled as:

x(t) = [
x−M(t), . . . , x0(t), . . . , xM(t)

]T

=
K1∑

i=1

Ca(θi,∞)si(t) +
K∑

j=K1+1

Ca(θ j, r j)s j(t) + n(t)
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