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In this work, we propose a constrained non-negative matrix factorization method for the audio 
restoration of piano music using information from the score. In the first stage (instrument training), 
spectral patterns for the target source (piano) are learned from a dataset of isolated piano notes. The 
model for the piano is constrained to be harmonic because, in this way, each pattern can define a 
single pitch. In the second stage (noise training), spectral patterns for the undesired source (noise) 
are learned from the most common types of vinyl noises. To obtain a representative model for the 
vinyl noise, a cross-correlation-based constraint that minimizes the cross-talk between different noise 
components is used. In the final stage (separation), we use the trained instrument and noise models in 
an NMF framework to extract the clean audio signal from undesired non-stationary noise. To improve 
the separation results, we propose a novel score-based constraint to avoid activations of notes or 
combinations that are not present in the original score. The proposed approach has been evaluated 
and compared with commercial audio restoration softwares, obtaining competitive results.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Digital audio has more advantages with respect to physical 
degradation over time compared to analog audio. Currently, audio 
restoration for material degraded by vinyl noise (non-stationary 
noise) remains a challenging task, although it has been a widely 
investigated problem over the past decades [1–5]. It is well-known 
that vinyl noise is a major problem in music recordings because 
it produces annoying sounds due to mainly two causes, the ma-
terial used in the manufacture of vinyl records, as imperfection 
in the pressing material and the physical wear. From a commer-
cial perspective, audio restoration is an attractive tool because it 
has been applied in both the music industry (e.g., improving the 
quality of old recordings) [6–10] and forensic restoration (e.g., im-
proving speech quality and intelligibility) [11–16].

Audio restoration can be defined as the process of removing 
any degradation from the audio material to preserve the quality 
of the original material (see Fig. 1). The degradation can be classi-
fied as localized or global. Localized degradation is a discontinuity 
in the waveform which affects some time intervals of the audio, 
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including clicks, crackles, pops, scratches, breakages, clipping, low 
frequency noise transients and buzz noise. This type of degradation 
is generally caused by dust, dirt, scratches or breakages on the sur-
face of the record. In contrast, global degradation affects the entire 
waveform and it can be cited background noise (hiss), hum, rum-
ble, wow and flutter and certain types of non-linear degradations 
such as speed variations or distortion [17].

Audio restoration approaches can be classified into two cate-
gories: frequency and time-domain methods. On the one hand, 
frequency-domain methods [1,18] are based on spectral subtrac-
tion schemes, in which the results are dependent on the estimated 
noise. On the other hand, time-domain methods [19,20] are based 
on the estimation of the statistical description of the audio events, 
and they incorporate signal models into the noise reduction.

Non-negative matrix factorization (NMF) is a more recent ap-
proach proposed for separating an acoustic source [21]. In fact, 
when the signal model is assumed to be non-negative, NMF pro-
vides a meaningful structure of the audio data, which in this case 
is obtained from the magnitude or power spectrograms. NMF is 
based on decomposing the spectrogram audio data into a sum of 
elementary spectral patterns (basis functions or components) with 
time-varying gains. In the basic form of NMF (baseline), unsuper-
vised learning is used without applying constraints. This fact pro-
vides very little control over its behaviour because a local minima 
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Fig. 1. Magnitude spectrogram of a 15-second piano excerpt degraded artificially 
(SNR = 0 dB) by vinyl noise (top), original piano (middle) from MAPS [38] and orig-
inal vinyl noise (bottom). Fig. 1(c) shows typical degradations of vinyl noise, such 
as impulsive noise and background noise.

can be obtained from the decomposition using a set of bases that 
do not model spectral patterns typical of audio as those patterns 
can be found in the nature. Therefore, it appears natural to add 
explicit constraints to the factorization problem to retain certain 
semantics of the original signal, thereby providing meaningful and 
interpretable components. Thus, several constraints have been in-
troduced to obtain NMF solutions that better fit certain expectan-
cies. Among other proposed constraints, we can cite harmonicity 
[22–24], sparsity [25,26] or temporal continuity [25,27–29].

In this paper, we propose a constrained non-negative matrix 
factorization approach to separate the target source (piano) from 
the undesired source (vinyl noise). For this purpose, we propose 
to extend the cross-correlation penalty function developed by [28], 
which leads to two novel constraints: single-activation and score-
based activation. The novelty of the first constraint lies in its use in 
the noise training stage to minimize the cross-talk between differ-

ent noise spectral patterns, thereby reinforcing the representativity 
of each individual pattern. Thus, the cross-correlations between 
the components of the gain matrix are added as a regularization 
term to the global distortion. The main contribution of this paper 
is the score-based activation constraint because it uses information 
from the score (in MIDI format) to control the possible combina-
tions of basis functions that can be active at one time. Concretely, 
concurrent activations of notes that do not occur in the score are 
penalized by a regularization term based on the cross-correlation 
between piano notes. Finally, the proposed constraints are included 
in an audio restoration framework with trained spectral patterns 
for piano sounds and vinyl noise. The results demonstrate that 
the use of the proposed constraints improves the audio quality in 
terms of the signal-to-distortion ratio (SDR), objective difference 
grades values (ODG) and MUSHRA scale.

The remainder of this paper is organized as follows. Section 2
reviews the background that is the basis for the proposed method. 
Section 3 details the proposed method. The evaluation results are 
presented in Section 4. Finally, we draw some conclusions and dis-
cuss future work in Section 5.

2. Background

2.1. Baseline NMF

Non-negative matrix factorization (NMF) [21] is a technique for 
multivariate data analysis that aims to obtain a parts-based rep-
resentation of objects by imposing non-negative constraints. The 
problem addressed by NMF is as follows: given a matrix X of di-
mensions F × T with non-negative entries, it is possible to model 
the matrix as linear combinations of N elementary non-negative 
spectra (also called basis functions or components). Therefore, NMF 
is the problem of finding a factorization:

X ≈ X̂ = BG (1)

where X̂ is the estimated matrix; B ∈ R
F×N is the matrix whose 

columns are the basis functions, which is also referred to as the 
basis matrix; and G ∈ R

N×T is a matrix of component gains for 
all frames. N is generally chosen such that FN + NT � FT , thereby 
reducing the dimensions of the data. In typical audio applications, 
the matrix X is chosen as a time-frequency representation (e.g., 
magnitude or power spectrogram), where f = 1, . . . , F denotes the 
frequency bin and t = 1, . . . , T is the time frame.

In the case of power and magnitude spectra, the parameters 
are restricted to be non-negative. Focusing on magnitude spectra, 
a common way to compute the factorization in eq. (1) is generally 
obtained by minimizing a cost function defined as

D(X|X̂) =
F∑

f =1

T∑
t=1

d(X f ,t | X̂ f ,t) (2)

where d(a|b) is a function of two scalar variables, and d is 
typically non-negative and takes a value of zero if and only if 
a = b. The most popular cost functions are the Euclidean dis-
tance DEUC(X|X̂), the generalized Kullback–Leibler DKL(X|X̂) and 
the Itakura–Saito D IS(X|X̂) divergences. In this work, we used the 
generalized Kullback–Leibler divergence because it has been suc-
cessfully applied in audio signal analyses [25,28,30].

An iterative algorithm based on multiplicative update rules is 
proposed in [21] to obtain the model parameters that minimize 
the cost function. Under these rules, DKL(X|X̂) is non-increasing at 
each iteration, and the non-negativity of the bases and the gains is 
ensured. These multiplicative update rules are obtained by apply-
ing diagonal rescaling to the step size of the gradient descent algo-
rithm. The multiplicative update rule for each scalar parameter Z



Download	English	Version:

https://daneshyari.com/en/article/564390

Download	Persian	Version:

https://daneshyari.com/article/564390

Daneshyari.com

https://daneshyari.com/en/article/564390
https://daneshyari.com/article/564390
https://daneshyari.com/

