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a b s t r a c t

An adaptive kernel principal component analysis (AKPCA) method, which has the

flexibility to accurately track the kernel principal components (KPC), is presented. The

contribution of this paper may be divided into two parts. First, KPC are recursively

formulated to overcome the batch nature of standard kernel principal component

analysis (KPCA). This formulation is derived from the recursive eigendecomposition of

kernel covariance matrix and indicates the KPC variation caused by the new data.

Second, kernel covariance matrix is correctly updated to adapt to the changing

characteristics of data. In this adaptive method, the KPC is adaptively adjusted without

re-eigendecomposing the kernel Gram matrix. The proposed method not only maintains

constant update speed and memory usage as the data-size increases, but also alleviates

sub-optimality of the KPCA method for non-stationary data. Experiments for simulation

data and real applications are detailed to assess the utility of the proposed method. The

results demonstrate that our approach yields improvements in terms of both

computational speed and approximation accuracy.

Crown Copyright & 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

Kernel principal component analysis (KPCA), which is a
nonlinear extension of principal component analysis (PCA)
[1], has gained significant attention as a learning machine
[2] in pattern recognition [3–6], statistical analysis [7,8] and
image processing [9,10]. The core idea of KPCA is to first
map the input space into a feature space using a nonlinear
mapping and then compute the principal components in the
feature space. As a result, the extracted kernel principal
component (KPC) of the mapped data is nonlinear with
regards to the original input space.

Although many issues have been discovered, two key
of them remain unresolved in KPCA, i.e., the batch nature
[11] and the non-adaptability to the changes in the data

characteristics. On one hand, the batch nature hinders
KPCA in terms of computation and memory demands as
the data-size increases. For KPCA, the kernel Gram matrix
has to be wholly available before eigendecomposition can
be carried out. The arrival of a new data will require the
addition of a new row and column for kernel Gram matrix,
and eigendecomposition has to be constantly reevaluated
for the ever-growing matrix. In addition, all data must be
saved to represent the KPC. This translates into high costs
for storage resources and computational load during run-
time application of large datasets. On the other hand, the
standard KPCA, which relies on a fixed model, cannot be
employed for non-stationary data whose input distribu-
tions could be temporally changed. According to [12], the
non-stationary property in input space will reappear in
feature space when the nonlinear mapping is smooth and
continuous. However, KPCA spends equivalent modeling
power on the mapped data to extract the KPC. This is not
desirable for tracking the changing characteristics of the
input data.
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In the last decade, several approaches have been
proposed to deal with the batch nature of KPCA, and could
be mostly grouped into three classes. The first class is to
kernelize the generalized Hebbian algorithm which is an
iterative self-organizing computation procedure for linear
PCA. The idea of using kernel Hebbian algorithm was first
explored by Kim et al. [10], where Hebbian algorithm is
iteratively implemented to estimate KPCs in the kernel
induced feature space. Later, Gunter et al. [13] developed
gain adaptation methods to improve convergence of the
kernel Hebbian algorithm by incorporating the reciprocal of
the current estimated eigenvalues as part of a gain vector.
While these methods can potentially lower the time
complexity of computing KPC, it is unclear how novel data
can be incorporated to update the output. The second class
is to compute KPC incrementally [14–16]. Specially, Chin
and Suter [15,16] show how to obtain the KPC by
incrementally updating singular value decomposition
(SVD) of the mapped data in feature space. To maintain
constant update speed and memory usage, the mean and
KPC representations was compressed by constructing
reduced-set expansions, which is computationally expen-
sive. The third class is the greedy KPCA [17,18] which was
employed to approximate the KPC by a prior filtering of the
training data. However, one drawback is the filtering could
be computationally expensive by itself. All the above
methods concentrate their study on approximation accuracy
and time complexity, with little effort contributed to
processing non-stationary data. It is obvious that these
methods cannot be directly used to adapt the KPC to recent
observations without modification.

To track the changing characteristics of data, it is
desirable to focus more on recently-acquired data and less
on earlier data. For example, when tracking a target with a
changes appearing in computer version, it is likely that
recent observations will be more indicative of its
appearance than distant ones. The most common way to
moderate the balance between old and new observations
is to incorporate an exponential forgetting window to the
observations [19]. However, the exponential window may
have several drawbacks: the influence of old data can last
for a very long time, and the exponential forgetting factor
must be determined appropriately. In time-varying
environment, another approach is to use sliding window
[20] where data within the window is assumed to be
stationary. Sliding window corresponds to rank-2 update,
i.e., adding a column to and deleting a column from the
data matrix simultaneously. Hoegaerts et al. [21] have
developed a fast updating and downdating procedure for
dominant eigenspace of a growing symmetrical kernel
Gram matrix. However, this does not imply the KPC
computation is solved, since the dominant eigenspace of
symmetrical kernel Gram matrix can be used to represent
the KPC only when the mapped date is zero-mean in the
feature space. Consequently, an approach which adapts to
the changing characteristics with efficient computation is
required.

This paper proposes an adaptive KPCA (AKPCA)
method with rapid and accurate computation for extract-
ing KPC. Rather than directly operating on mapped kernel
data or kernel Gram matrix, we commence with the

kernel covariance matrix, from which the AKPCA arises.
The basis of our solution lies in decomposing the new
data into a component orthogonal and a component
parallel to the previous KPC, and adaptively adjusting KPC
based on the rank-2 update of kernel covariance matrix.
The contribution made in this paper is twofold: (1)
recursively formalizing KPC to adapt to the changing
characteristics of non-stationary data and (2) reducing the
computational complexity and memory usage of KPCA
to O(N).

The rest of the paper is organized as follows. Section 2
presents a brief description of the KPCA method. Section 3
elucidates the proposed AKPCA approach, including the
recursive decomposition of kernel covariance matrix,
recursive KPC formulation and the update of kernel
covariance matrix which adapts to the changing char-
acteristics of data. Section 4 discusses the methodological
and computational issues of the proposed AKPCA. Section
5 details the experiments and analysis aiming at assessing
the performance of the proposed method. We derive the
conclusion in Section 6.

2. Preliminaries

We begin by obtaining a data matrix x¼ ðx1; x2; . . . ; xnÞ

2 Rm�n, with xi 2 R
m being the data vector at time iZ1.

KPCA nonlinearly maps x into a higher dimensional space
F , and subsequently performs linear PCA in F . Assuming
that the mapped data is centered in feature space (we
shall return to this point later), its covariance matrix is
given by

Cn ¼
1

n

Xn

i ¼ 1

fðxiÞfðxiÞ
T ; ð1Þ

where f is the nonlinear mapping function. The map f is
induced by a kernel function k( � , � ) that allows us to
evaluate inner products in F : kðxi; xjÞ ¼fðxiÞ �fðxjÞ, for
i,j=1,y, n. Given that the mapping function f is implicit,
eigendecomposition cannot be performed on Cn to
compute the KPC. KPCA circumvents the KPC by a dual
eigendecomposition problem for kernel Gram matrix
Knaw=nlwaw, in which aw ¼ ðaw

1 ; a
w
2 ; . . . ; aw

n Þ
T is the nor-

malized eigenvector1 associated with the w-th largest
eigenvalues. Then, the r most significant KPC in feature
space take the form of

Vn ¼ ½v
1; v2; . . . ; vr � ¼ ½fðx1Þ;fðx2Þ; . . . ; fðxnÞ�An; ð2Þ

where vw is the w-th columns of Vn, and An is the matrix
with the columns of aw, w=1, 2,y, r. Let z 2 Rm be a test
data, with an image fðzÞ, then its w-th principal
component corresponding to f is

pzðwÞ ¼ vw � fðzÞ ¼
Xn

i ¼ 1

aw
i kðxi; zÞ: ð3Þ

The Eq. (3) is important for the proposed AKPCA since
it does not require f in explicit form and the projections
of arbitrary data onto the KPC can be solved entirely in
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1 aw should be scaled to ensure aw
�aw=1/nlw.
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