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a b s t r a c t

This paper demonstrates the effectiveness of a nonlinear extension to the matched filter

for signal detection in certain kinds of non-Gaussian noise. The decision statistic is

based on a new measure of similarity that can be considered as an extension of the

correlation statistic used in the matched filter. The optimality of the matched filter is

predicated on second order statistics and hence leaves room for improvement,

especially when the assumption of Gaussianity is not applicable. The proposed method

incorporates higher order moments in the decision statistic and shows an improvement

in the receiver operating characteristics (ROC) for non-Gaussian noise, in particular,

those that are impulsive distributed. The performance of the proposed method is

demonstrated for detection in two types of widely used impulsive noise models, the

alpha-stable model and the two-term Gaussian mixture model. Moreover, unlike other

kernel based approaches, and those using the characteristic functions directly, this

method is still computationally tractable and can easily be implemented in real-time.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The linear correlation filter or matched filter (MF) has
been the basic building block for a wide range of
applications requiring detection of known signals [1,2].
The limitations of the matched filter though are already
defined by the assumptions under which it is optimal. It is
well known that for the detection of a known signal in
additive white Gaussian noise (AWGN) the matched filter
maximizes the signal to noise ratio (SNR) among all linear
filters [3]. Theoretically, it also uses the maximum like-
lihood statistic for hypothesis testing under the assump-
tions of linearity and Gaussianity. Optimal detection in
non-Gaussian noise (or nonlinear) environments usually
requires the use of the characteristic function and is much
more complex due to the need of higher order statistics to
accurately model the noise [4]. This motivates the recent

interest in nonlinear filters (kernel matched filters) [5,6]
or non-quadratic cost functions [7], but the computational
complexity of such solutions outweighs their usefulness
in applications where high processing delay cannot be
tolerated such as in radar and mobile communication
systems.

Kernel methods [8–10] transform the data points x and
y from the input space to a higher dimensional feature
space of vectors FðxÞ and FðyÞ, where the inner products
can be computed using a positive definite kernel function,
kðx; yÞ ¼ hFðxÞ;FðyÞi satisfying Mercer’s conditions [11].
This can also be employed to obtain a nonlinear solution
to the template matching problem [5]. But the correlation
matrix formed in this infinite dimensional feature space is
also infinitely large and the resulting formulation is
complex using a large set of training data. Alternatively,
it can be formulated as a discriminant function in kernel
space [6], but still suffers from the need to train the
system before hand and store the training data. The
matched filter based on quadratic mutual information
(MI) is another recently introduced nonlinear filter that
maximizes the mutual information between the template
and the output of the filter [7]. This method does not
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require an initial training step since it is non-parametric.
However, the method requires the estimation of the
quadratic mutual information with kernels and the
computational load is still OðN2

Þ at best.
The method in this paper uses a recently introduced

positive definite function called correntropy [12],
which quantifies higher order moments of the noise
distribution with a low computational complexity of OðNÞ.
The performance of the proposed correntropy matched
filter (CMF) is compared with that of the traditional
matched filter (linear correlation filter) and the matched
filter using mutual information in a variety of scenarios
using an additive channel, with Gaussian and impulsive
noise distributions. For a-stable distributed impulsive
noise, the locally suboptimal (LSO) detector is also
presented for comparison, which is designed for optimal
performance exclusively for this type of noise. The
comparison is illustrated using the receiver operating
characteristics (ROC), which shows the trade off between
the probability of detection and the probability of false
alarms [13].

2. Background

2.1. Linear matched filter

For the case of detecting one signal s1i over another
signal s0i in the presence of AWGN, the maximum
likelihood decision statistic is simply the difference
between the correlation of the received signal ri with
the two signal templates [14] and can be expressed as

LðrÞ ¼
1

N

XN

i¼1

riðs1i � s0iÞ. (1)

This, in fact, is the output yk ¼ rk � hk of the matched filter
at the time instant k ¼ N þ 1, N being the signal length,
where � denotes convolution and hk ¼ s1;Nþ1�k � s0;Nþ1�k

is the matched filter impulse response. The simplicity, as
is apparent, makes the wide applicability of the matched
filter principle possible.

2.2. Information theoretic learning and mutual information

Information theoretic learning (ITL) is an adaptive
methodology (cost function and learning) of extracting
information directly from data in a non-parametric
manner [15]. In information theory, the mutual informa-
tion between two random variables X and Y is tradition-
ally as defined by Shannon [16]. The crucial property of
mutual information for our purposes is the fact that the
value of mutual information increases as the dependency
(even nonlinear) of X on Y increases. On the other hand, if
X and Y are independent, MI becomes zero. Essentially, we
want a measure of divergence of the variables X and Y

from independence. A qualitatively similar measure of
independence called the Cauchy–Schwartz mutual infor-
mation (CS-QMI) can be derived between X and Y using
the Cauchy–Schwartz inequality for inner products in

vector spaces and is given by [15]

IsðX;YÞ ¼
1

2
log

RR
p2

XY
ðx; yÞdx dy

RR
p2

XðxÞp
2
Y ðyÞ dx dy

ð
RR

pXY ðx; yÞpXðxÞpY ðyÞdx dyÞ2
(2)

with data available, IsðX;YÞ can be estimated using Parzen
window density estimation and can be used as a statistic
for signal detection as in [7]. We shall use CS-QMI as a
comparison against our proposed method as well since
this is a direct template matching scheme that requires
no training and shows improved performance in non-
Gaussian and nonlinear situations [7].

2.3. Impulsive noise distributions

Since this paper aims to show the effectiveness of the
proposed method in impulsive noise environments, we
shall briefly introduce the most commonly used PDF
models for such distributions. These distributions are
commonly used to model noise observed in low-fre-
quency atmospheric noise, fluorescent lighting systems,
combustion engine ignition, radio and underwater acous-
tic channels, economic stock prices, and biomedical
signals [17–19]. There are two main models used in
literature that we present next.

2.3.1. Two-term Gaussian mixture model

The two-term Gaussian mixture model, which is an
approximation to the more general Middleton Class A
noise model [20] has been used to test various algorithms
under an impulsive noise environment [6,19,21]. The noise
is generated as a mixture of two Gaussian density
functions such that the noise distribution f NðnÞ ¼

ð1� �ÞNð0;s2
1Þ þ �Nð0;s2

2Þ, where � is the percentage of
noise spikes and usually s2

2bs2
1.

2.3.2. a-Stable distribution

a-Stable distributions are also widely used to model
impulsive noise behavior [17,18]. This distribution gradu-
ally deviates from Gaussianity as a decreases from 2 to 1
(when the distribution becomes Cauchy). This range is
also appropriate because even though the higher mo-
ments may not exist, the mean is still defined. Here we
shall only consider the symmetric a-stable noise. The
characteristic function of such noise is given by

CaðuÞ ¼ e�s
a juja , (3)

where s represents a scale parameter, similar to a standard
deviation. Such a random variable has no moment greater
than or equal to a, except for the case a ¼ 2 [22].

2.3.3. Locally suboptimal receiver

We shall compare the performance of the proposed
CMF detector with the locally suboptimum detector,
which gives an impressive performance with minimum
complexity [23]. The LSO detector is derived directly from
the locally optimum (LO) detector [24], whose test
statistic is given by

TLOðrÞ ¼
XN

k¼1

skgLOðrkÞ, (4)
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