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This work proposes to enhance well-known descriptors of texture images by extracting such descriptors 
both directly from pixel intensities as well as from the local non-additive entropy of the image. The 
method can be divided into four steps. 1) The descriptors are computed for the original image according 
to what is described in the literature. 2) The image is transformed by computing the non-additive entropy 
at each pixel, considering its neighborhood. 3) Similarly to step 1, the descriptors are computed from the 
transformed image. 4) Descriptors from the original and transformed images are combined by means 
of a Karhunen–Loève transform. Four texture descriptors widely used in the literature were considered: 
Gabor wavelets, Gray-Level Co-occurrence Matrix, Local Binary Patterns and Bouligand–Minkowski fractal 
descriptors. The proposal is assessed by comparing the performance of the descriptors alone and after 
combined with the non-additive entropy. The results demonstrate that the combination achieved the best 
results both in image retrieval and classification tasks. The entropy is still more efficient in local-based 
methods: Local Binary Patterns and Gray-Level Co-occurrence Matrix.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Texture analysis is one of the most important tasks in pattern 
recognition and computer vision. Despite the usefulness and im-
portance of textures in image representation, it has no formal and 
consensual definition in the literature. Here, we have adopted the 
definition presented in [1]. It is stated that the textures are com-
plex visual structures composed of sub-patterns, which show the 
characteristic properties such as roughness, granularity and unifor-
mity among others. Texture analysis employs pattern recognition 
methods to identify the objects based on their visual patterns. In 
this way, this kind of analysis is capable of capturing meaningful 
information even in the most complex images, when other ap-
proaches like contour or color analysis may fail.

Despite its importance, texture analysis still is a great challenge, 
mainly when it is applied to real-world problems where a reli-
able extraction of information from the analyzed objects depends 
on the complex relationships amongst patterns in the image rep-
resentation. Faced with these difficulties, the literature provides a 
number of approaches in an attempt to represent the richness en-
closed in a texture image in the most faithful manner.
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Among the authors of the first works on texture analysis, Haral-
ick is best known for his co-occurrence matrix [2]. By exploring the 
statistical relationship among pixel neighborhoods, such approach 
has become the standard method for texture analysis in the 1970’s. 
A contemporary approach that also gathered attention in the liter-
ature is the Random Markov Fields [3], which was used mainly for 
segmentation purposes. At the end of the same decade Laws [4]
proposed to compute the energy of the image after the applica-
tion of several filters. During the 1980’s, fractal geometry emerged 
as a powerful theory to obtain the texture features. This approach 
was first presented by Mandelbrot [5], which was later rigorously 
tested by Pentland [6]. More recently, important advances were 
made on the basis on this approach, by proposals like multifrac-
tals [7] and fractal descriptors [8]. Moreover, a recent contribution 
was made by Local Binary Patterns [9], which describes the pixel 
neighborhood in a quite simple but powerful way based on the 
position-dependent weights for the pixel intensities.

Nevertheless, most of the proposed methods obtain the features 
from the image in a direct manner, without considering the com-
plementary information that cannot be expressed by the intensities 
of pixels, but only through particular operations over those pixels. 
In an attempt to fill this gap, some authors have proposed the ex-
traction of features from other domains, like wavelets [10], discrete 
cosine transform [11], Hough transform [12], and others. On the 
other hand, other works have been proposed to extract the com-
plementary information from the set of descriptors by means of 
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transforms, which try to emphasize some particular characteristics 
of those features [13–15]. Even though such methods are efficient 
to reduce the redundancy in the original data, most of them do 
not provide any truly different viewpoint other than the pixel in-
tensities.

In this context, this work proposes a method to increase the 
performance of well-known texture descriptors by using informa-
tion from the non-additive entropy [16] in each local neighborhood 
of the image. In addition to measure the level of disorder in the 
local pixel distribution, the non-additive property of this entropy 
ensures a more suitable processing of complex non-linear struc-
tures commonly found in real-world images.

The non-additive entropy is computed for each pixel consid-
ering its 8-neighborhood. The descriptors from the original image 
and from the entropy values are combined by a concatenation fol-
lowed by a Karhunen–Loève transform to identify the most mean-
ingful features. The combined descriptors are compared to the con-
ventional approaches, using different values for the q parameter in 
the non-additive entropy.

2. Non-additive entropy

Many types of entropy were created after the studies devel-
oped by Boltzmann–Gibbs–Shannon. One of them to be highlighted 
is the non-additive entropy [16]. Based on the idea that different 
systems require different tools of analysis, which are appropriate to the 
particularities contained in each system, Tsallis devises its own in-
formational tool named as the non-additive entropy of Tsallis or 
just q-entropy. The non-additive entropy is the generalization of 
the standard entropy (Shannon entropy). It is created to extend 
the scope of applications of classical statistical physics, which is 
defined by:

Sq =
∑

p(x) lnq(1/p(x)), (1)

where lnq is the q-logarithmic function given by: lnq(x) = (xq−1 −
1)/(q − 1). The entropic index q is real, can be freely chosen and 
characterizes the generalization. When q → 1 we have the stan-
dard logarithm function and consequently the standard entropy is 
retrieved.

The generalized non-additive entropy maintains the character 
of irreversibility, formulated by Boltzmann’s H theorem. However, 
unlike the standard entropy, this entropy is non-additive. Since

lnq(x1x2) = lnq(x1) + lnq(x2) + (1 − q) lnq(x1) lnq(x2), (2)

then:

Sq(A + B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B). (3)

The parameter (1 − q) of equation gives a measure of the non-
additivity, if q < 1 the system is called super-additive and when 
q > 1 then the system is sub-additive. This entropy is a good can-
didate to describe the systems long-range interactions, long-term 
memory and phase spaces with the fractal structure.

Particularly, in this analysis of signals and images, the (Shan-
non) entropy plays an important role in describing how predictable 
is a sequence of measures acquired from the real world. The non-
additive entropy adds an important parameter to the entropy with 
a goal of quantifying the non-additive function of the system. Such 
a property is of great importance in natural textures where multi-
fractal structures can be found quite easily [17–19].

3. Methods of texture analysis

Textures are images characterized by the presence of spatial or 
statistical patterns. These patterns are not necessarily periodic. As 
these are complex images, the textures present great challenges 

to techniques of pattern recognition and image analysis. Examples 
of textures include zebra’s fur, a pile of rocks, wood, tissues of 
clothes, details on walls, a chessboard, marble, and others. Liter-
ature presents a large number of methods to analyze these kinds 
of texture images [1]. These methods can be classified in four types 
as a) structural, b) statistical, c) spectral and d) based on models.

a) Structural methods: These methods treat textures as hierar-
chical arranges of well defined elements, providing a symbolic 
description of the image. Morphological operations like open-
ing and closing and detectors of points of interest are applied 
with the aim of finding and describing the arrangement of el-
ements.

b) Statistical methods: Here, textures are described by statisti-
cal properties of their gray-levels. The first methods of this 
category proposed calculations based on the histogram of the 
images. Since these are very simple approaches, they were re-
placed by more efficient statistical methods such as Gray-Level 
Co-occurrence Matrix [2] or Local Binary Patterns [9].

c) Spectral methods: The purpose of these methods is to rep-
resent the texture images using their spectral information. In 
order to do this it is necessary to estimate the spectral fre-
quency of pixel intensity and correlate finer textures with high 
frequencies and rough textures with low frequencies. Hence 
in order to describe textures, methods in this category are 
based on filters like Gabor and decomposition in sub-bands 
like wavelets [20].

d) Methods based on models: These methods based on models 
use a built model and feature extraction based on the model 
to represent textures. The models are usually fractal based 
or stochastic. Besides this, fractal usage presents good results 
when one uses local fractal dimension and multiscale fractal 
dimension [8,13,21].

Once texture patterns are not necessarily periodic, the applica-
tion of structural methods use to be restrict, because this kind of 
method assumes that all textures have well defined elements, and 
this is not always true. On the other hand, the other three meth-
ods are able to deal with this challenge of non-periodic patterns. 
From this point, four of the most relevant methods (two Statisti-
cal, one Spectral and the last one based on models) are showed in 
details on this paper.

The statistical methods that we chose were Gray-Level Co-
occurrence Matrix and Local Binary Patterns, because both ap-
proaches are much more effective compared to traditional methods 
of this category (simple calculations based on the histogram of 
the images). From Spectral methods we decide to work with Ga-
bor wavelets since this filter/sub-band decomposition has the most 
common usage on the literature [20].

The last method was given in “based on models” category: 
named as the multiscale fractal approach Bouligand–Minkowski. 
The reason to use this method is the success that previous studies 
obtained using this tool [8,13,21].

The following sections give us a brief introduction to these four 
widespread texture descriptors. These are also the methods chosen 
to be enhanced in our proposed approach.

3.1. Gray-level co-occurrence matrix

Although, this is a simple and consolidated method, it is ca-
pable of providing remarkable results in many texture analysis 
problems. It is based on the famous experiments conducted on 
the human visual perception carried out by Julesz in the seven-
ties [22]. Such experiments showed that “no texture pair can be 
discriminated if they agree in their second-order statistics”. De-
spite counterexamples found subsequently for this statement, this 
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