ARTICLE IN PRESS

Ann Allergy Asthma Immunol xxx (2016) 1-7

Contents lists available at ScienceDirect

Inhaled corticosteroid dose response in asthma Should we measure inflammation?

William J. Anderson, MD; Philip M. Short, MD; Sunny Jabbal, MBChB; Brian J. Lipworth, MD

Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, Scotland

ARTICLE INFO

Article history:

Received for publication September 1, 2016. Received in revised form November 11, 2016

Accepted for publication November 22, 2016.

ABSTRACT

Background: Inhaled corticosteroid (ICS) titration in asthma is primarily based on symptoms and pulmonary function. ICSs may not be increased on this basis despite residual airway inflammation.

Objective: To compare the dose-response relationships of ICSs on measures of pulmonary function, symptoms, and inflammation in patients with persistent asthma.

Methods: We performed a pooled post hoc analysis of 121 patients with mild to moderate asthma from 4 randomized clinical trials that incorporated an ICS dose ramp. Dose ramps were 0 to 200, 0 to 800, and 200 to 800 μ g/d (beclomethasone equivalents). Outcome measures included spirometry, fractional exhaled nitric oxide, airway hyperresponsiveness (AHR), symptoms, serum eosinophilic cationic protein, and blood eosinophils.

Results: We found a plateau beyond a small improvement at 0 to 200 μ g for forced expiratory volume in 1 second: 3.3% (95% confidence interval [CI], 2.0%–4.7%) at 0 to 200 μ g vs 0.3% (95% CI, -0.8% to 1.4%) 200 to 800 μ g (P=.001). A similar plateau was seen for symptom improvement beyond 0 to 200 μ g. Inflammatory and AHR outcomes revealed further room for improvement beyond low-dose ICSs. There was dose-related suppression (P<.001) for fractional exhaled nitric oxide: 40.4 ppb (95% CI, 34.7–46.9 ppb) for ICS free, 26.8 ppb (95% CI, 23.4–30.2 ppb) for 200 μ g, and 20.8 ppb (95% CI, 18.8–23.1 ppb) for 800 μ g. Eosinophilic cationic protein concentration was significantly reduced with both higher dose ramps. Eosinophil counts also improved across all 3 dose ramps, with dose separation of 370/ μ L (95% CI, 280–450/ μ L) for ICS free vs 250/ μ L (95% CI, 200–300/ μ L) 800 μ g (P=.03). AHR improved with all 3 dose ramps, with greater improvement at lower doses for indirect vs direct challenges.

Conclusion: ICS dose response may extend beyond low dose for inflammation and AHR but not symptoms or spirometry. Further study is required to identify whether this correlates with suboptimal longitudinal asthma control

Trial Registration: ClinicalTrials.gov Identifiers: NCT00667992, NCT00995657, NCT01216579, NCT01544634. © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

Introduction

Asthma is a heterogeneous chronic inflammatory disease of global importance¹ that places a significant burden on individual patients and health care services, where many patients remain inadequately treated^{2,3} with an ongoing attendant mortality.⁴ The concept of achieving total asthma control⁵ is important for reducing the future risk of exacerbations.^{6–8} It is therefore imperative that we have robust procedures for accurate diagnosis, measurement of severity, prediction of future risk, and appropriate personalized treatments to achieve this goal. Nevertheless, current

Reprints: Brian J. Lipworth, MD, Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY Scotland; E-mail: b.j.lipworth@dundee.ac.uk.

Disclosures: Dr Short reported having financial interests with Chiesi. Dr Lipworth reported having financial interests with Meda, Cipla, and Dr Reddys and research interests with Meda and Pearl. No other disclosures were reported.

guidelines for the identification and treatment of asthma merely include symptoms and lung function measurements.^{5,9} The Royal College of Physicians' recent National Review of Asthma Deaths report⁴ found that only 39% of patients who died were actually diagnosed as having severe asthma according to current guidelines, with the remainder therefore diagnosed as having mild or moderate asthma, suggesting we may not be accurately identifying those at greatest risk.

Measurement of inflammatory outcomes has improved our understanding of asthma and improved personalized treatment. Studies have found that titrating steroid therapy against inflammation may improve outcomes, such as exacerbation rates. ^{10–12} For example, one primary care—based study that titrated inhaled corticosteroid (ICS) dose against mannitol challenge vs a reference strategy resulted in a 27% significant reduction in mild exacerbations but no difference in severe exacerbations. ¹¹ Similar findings were observed in another study using methacholine challenge. ¹³ Green

et al¹⁰ found this by titrating steroid treatment against sputum eosinophil counts, resulting in significantly fewer severe exacerbations compared with standard guideline-driven treatment. It is interesting that this was achieved with no difference in overall mean dosage of ICSs between the 2 groups, suggesting that for the individual, any steroid titration was performed at the right time for them when their levels of inflammation were greater. However, other studies have suggested a more muted response to inflammatory steroid titration in unselected patients with asthma.^{14,15}

Price et al¹⁶ found retrospectively, in a primary care cohort, that patients with asthma with higher blood eosinophil counts fared worse in terms of experiencing more severe exacerbations and poorer asthma control. Moreover, eosinophilic inflammation may be masked when using a long-acting β_2 -agonist as a steroid-sparing agent. ^{17,18} Sputum and blood eosinophilia in asthma have both been separately found to predict loss of asthma control and increased exacerbation rates. ^{6,19,20} This is also true of fractional exhaled nitric oxide (FeNO) levels²¹ and airway hyperresponsiveness (AHR),⁶ the latter being largely driven by airway inflammation.²² It is therefore logical that one might wish to control inflammation over and above simply controlling symptoms and lung function—much like controlling asymptomatic hypertension to prevent subsequent cardiovascular sequelae. This is relevant given that lung function and lack of symptoms may be deemed normal despite the possibility of an ongoing underlying inflammatory process.²³

We performed a post hoc pooled analysis of data from 4 previously published randomized clinical trials in which ICS dose

titration was used in a prospective manner. Outcome measurements included symptoms, lung function, inflammation, and AHR. We then analyzed the dose-response relationship to ICSs for these outcomes to identify where incremental ICS dosing provides the greatest effect and thus is likely to be most informative when titrating a given individual's treatment to achieve optimal or total asthma control.

Methods

Patients

Nonsmoking men and women (age range, 18–65 years) with mild-moderate, persistent asthma receiving 1,000 $\mu g/d$ of ICSs or less (ie, expressed as a reference dose of large particle beclomethasone dipropionate equivalent dose) were recruited to each of 4 RCTs. ^{11,24–26} For example, large-particle hydrofluoroalkane-fluticasone (200 μg) or small-particle hydrofluoroalkane-beclomethasone (200 μg) would be equivalent to large-particle hydrofluoroalkane-beclomethasone dipropionate (400 μg). Their post—run-in baseline measurements are presented in Table 1. Further detailed inclusion and exclusion criteria can be found in each of the reported trials.

Study Design

We performed a post hoc analysis using data from 4 RCTs, ^{11,24–26} each comprising a component where the effects of ICS dose ramp

Table 1Baseline Values After Run-in at the Given Beclomethasone Dipropionate Equivalent Doses for Large-Particle Hydrofluoroalkane—Fluticasone Propionate, Large-Particle Hydrofluoroalkane-Budesonide, Small-Particle Hydrofluoroalkane-Beclomethasone, and Small-Particle Hydrofluoroalkane-Ciclesonide^a

Variable	All (N = 121)	Fluticasone propionate (ICS free) $(n=21)$	Budesonide (ICS free) (n = 72)	Hydrofluoroalkane- beclomethasone dipropionate (200 μ g of beclomethasone dipropionate) (n = 16)	Ciclesonide (200 μg of beclomethasone dipropionate) (n = 12)
Age, mean (95% CI), y	39.8 (37.2–42.4)	36.8	39.6	37.8	48.7
Sex, M:F	44:77	6:15	29:43	6:10	3:9
SPT allergens, median (IQR)	3 (2–4)	3 (1–4)	3 (2-3.25)	2.5 (1-4)	1.5 (0-3.25)
SPT positivity, % patients	89	81	94	88	63
FEV ₁ , mean (95% CI), % predicted	85.1 (82.9–87.3)	88.5	82	90.3	89
FEF _{25%-75%} , mean (95% CI), % predicted	65.7 (61.5,69.8)	53.5	70.4	60.3	-
FEV ₁ /FVC ratio, mean (95% CI), %	75.2 (73.7–76.7)	71.2	75.6	74.6	80.5
FeNO, geometric mean (95% CI), ppb	37.3 (32.3–42.6)	72.4	34.7	29.1	25.4 (n = 10)
AHR, geometric mean (95% CI)		102 mg (57–183 mg) mannitol PD ₁₅	0.72 mg/mL (0.58-0.90 mg/mL) methacholine PC ₂₀	1.31 mg/mL (0.64–2.69 mg/mL) histamine PC ₂₀	59 mg (15–233 mg) mannitol PD ₁₀
ECP, geometric mean (95% CI), μ g/L (n = 47)	20.5 (15.9,26.3)	18.6	-	22.4	21.9
Eos, mean (95% CI), $/\mu$ L (n = 37)	330 (280,390)	370	-	290	-
Symptom score, mean (95% CI) ^b		5.8 (5.4–6.2)	$0.96^{\circ} (0.79 - 1.12)$	6.2 (5.9–6.5)	6.1 (5.6–6.5)
Screening ICS (beclomethasone dipropionate equivalent, mean (95% CI), µg/d	420 (361–479)	440	414	406	436

Abbreviations: AHR, airway hyperresponsiveness; CI, confidence interval; ECP, eosinophilic cationic protein; $FEF_{25\%-75\%}$, forced expiratory flow between 25% and 75%; FeNO, fractional exhaled nitric oxide; FEV_1 , forced expiratory volume in 1 second; FV_1 , forced vital capacity; ICS, inhaled corticosteroid; IQR, interquartile range; PC_{10} , provocation concentration causing a 10% decrease in FEV_1 ; PC_{20} , provocation concentration causing a 20% decrease in FEV_1 ; PD_{15} , provocation dose causing a 10% decrease in FEV_1 ; PC_{20} , provocation concentration causing a 20% decrease in PEV_1 ; PC_{20} , provocation dose causing a 10% decrease in PEV_1 ; PC_{20} , provocation dose causing a 10% decrease in PEV_1 ; PC_{20} , PC_{20} ,

aOverall means (95% CIs) are presented in the leftmost column. All other data are expressed as arithmetic means (95% CIs) unless otherwise stated.

^bSymptom scores are the symptom component of the Mini Asthma Quality of Life Questionnaire, except for budesonide.

^cTotal symptom score was scored as follows: 0, no symptoms; 1, mild; 2, moderate; and 3, severe.

Download English Version:

https://daneshyari.com/en/article/5645456

Download Persian Version:

https://daneshyari.com/article/5645456

Daneshyari.com