
Estimating multivariate ARCH parameters by two-stage
least-squares method

Saman Mousazadeh a,b,�, Mahmood Karimi a

a Department of Electrical Engineering, Shiraz University, Shiraz, Iran
b Iran Telecommunication Research Center (ITRC), Iran

a r t i c l e i n f o

Article history:

Received 16 March 2008

Received in revised form

5 October 2008

Accepted 17 November 2008
Available online 28 November 2008

Keywords:

Multivariate ARCH

Parameter estimation

QMLE

TSLS

a b s t r a c t

This paper discusses the asymptotic properties of the two-stage least-squares (TSLS)

estimator of the parameters of multivariate autoregressive conditional heteroscedasti-

city (ARCH) model. The estimator is easy to obtain since it involves solving sets of linear

equations. It will be shown that, under some conditions, this TSLS estimator is

asymptotically consistent and its rate of convergence is the same as that of the quasi

maximum likelihood estimator (QMLE). At the same time, the computational load of the

TSLS estimator is extremely lower than that of the QMLE. The performance of the TSLS

estimator will be evaluated and compared with QMLE using simulations. Simulation

results show that the performances of the two estimators are comparable, even for

small data records.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

The autoregressive conditional heteroscedasticity
(ARCH) model was first introduced by Engle in 1982 [1].
This model represents a powerful tool for the analysis and
forecasting of volatility in financial markets. ARCH is a
statistical model which explicitly parameterizes a time-
varying conditional variance using squared absolute
values, while considering volatility clustering and excess
kurtosis (i.e. heavy-tailed distribution). This feature of
ARCH models enables them to be applied to numerous
economic and financial data to model unpredictability;
the strong dependence of the instantaneous variability of
a time series on its own past. Another feature of the ARCH
process is that it is a white process. So, in some
applications it may be useful for modeling heavy-tailed
white processes.

Since 1982, the ARCH model has been expanded by
several authors such as Bollerslev [2,3] and others. One of
these expanded models is the multivariate generalized
ARCH (multivariate GARCH) model introduced by Boller-
slev [3]. The multivariate ARCH model with constant
correlation is a special case of this model.

The most obvious application of multivariate ARCH
models is the study of the relations between the
volatilities and co-volatilities of several markets [3].
As an example, it was used to model coherence in short-
run nominal exchange rates [3]. As econometric variables
usually depend on each other, the multivariate GARCH
model has recently been used for modeling the econo-
metrics (see [4–8]).

Recently, GARCH modeling has been used in many
signal processing applications such as speech denoising
[9], blind speech source separation [10], voice activity
detection [11], speech recognition in isolated digits [12],
and ambient sea noise modeling [13]. In [12], a GARCH
model has been utilized in the time domain for speech
recognition applications. The model parameters, charac-
terizing the speech phonemes, are assumed speaker
independent. However, in most speech processing
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applications like speech denoising and blind speech
source separation, the speech is modeled in the short
time Fourier transforms (STFT) domain as a GARCH
process. For the simplicity and lowering the computa-
tional load, most authors assume that signals in different
frequency bins are independent and can be modeled
separately [9–11,13]. However, it is mentioned that if one
can model the signals as a multivariate GARCH process
better results can be achieved [10]. Since the GARCH
process can be modeled as an ARCH process with high
order [14], it seems that one can use the ARCH model of
high order instead of the GARCH model in speech
processing applications [14].

Parameter estimation is the first step in model based
signal processing. The most popular method for estimat-
ing the parameters of the multivariate ARCH model is
quasi maximum likelihood (QML) estimation which needs
numerical maximization because it does not admit a
closed form expression [15]. In this method the process
noise, eðtÞ, (see Section 2) is assumed to be Gaussian (this
is because the true distribution might not be known), and
by using this assumption one can maximize the likelihood
function over the parameters. Note that usually the true
distribution of eðtÞ is not known and the maximum
likelihood (ML) estimator cannot be used. So, it is
assumed that eðtÞ is Gaussian and the estimator is denoted
as QML. It is shown in [16] that the QML estimator is
asymptotically consistent. The drawback of this method is
its computational load, which is very high [15]. Therefore
this method cannot be used in real time signal processing
applications such as speech enhancement, which needs to
be real time in some cases. In this paper we propose an
asymptotically consistent estimator for the multivariate
ARCH parameters. In the scalar case, this multivariate
estimator reduces to the estimator proposed in [17]. Our
estimator is very simple because it just involves the
solution of linear equations, and therefore its computa-
tional load is extremely lower than the QML estimator.
The main achievement of this paper is to show that the
rate of convergence for our estimator (as the number of
data increases) is the same as the QML estimator.
Simulation results show that the performance of our
estimator is approximately the same as the performance
of the QML estimator.

The remainder of this paper is organized as follows.
In Section 2 we derive our estimator named the
two-stage least-squares (TSLS) estimator. In Section 3
we derive the statistical properties of the TSLS
estimator in the large data case. In Section 4 we use
simulations to evaluate the performance of our
estimator and compare it with that of the QML estimator.
Finally, the proof of some equations is given in
Appendix A.

2. TSLS estimator

Multivariate ARCH model with constant correlation is
defined as

xðtÞ ¼ RðtÞeðtÞ (1)

where x(t) is a d�1 vector, eðtÞ is a d�1 independent
identically distributed (i.i.d.) zero mean normal vector
with unknown covariance matrix

C ¼

1 g12 . . . g1d

g21 1 . . . g2d

�

�

�

�

�

�

. . .

�

�

�

gd1 gd2 . . . 1

2
6666666664

3
7777777775

(2)

and RðtÞ is a d� d matrix defined as

RðtÞ ¼ diagðs1ðtÞ;s2ðtÞ; . . . ;sdðtÞÞ (3)
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where d�1 vector w and the d�d matrices Ai are model
parameters having all positive elements and
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is the matrix of these parameters. q is the known order of
the model and d is the dimension of the model. [.]T

denotes transpose of a matrix or vector and � is the
Hadamard product (term by term multiplication) opera-
tor. It can be shown that if the polynomial
pðlÞ ¼ detðI�

Pq
i¼qAil

i
Þ, where I is the identity matrix,

has all of its roots outside the unit circle, then this model
is strictly stationary and ergodic [16].

The definition of multivariate ARCH model given in (1)
shows that this model is a multivariate nonlinear auto-
regressive process. The term R(t) on the right hand side of
(1) shows the dependence of x(t) on its past values, and
the process noise e(t) is the input noise of the model.

If we square the elements of x(t) and call the produced
vector y(t), i.e.

yðtÞ ¼ ½y1ðtÞ; y2ðtÞ; . . . ; ydðtÞ�
T ¼ xðtÞ � xðtÞ (6)

then
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where xi and ei are the ith elements of x(t) and e(t),
respectively. If we define

ZiðtÞ ¼ �
2
i ðtÞ � 1 (8)
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