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Joint detection and estimation (JDE) of a target refers to determining the existence of the target and 
estimating the state of the target, if the target exists. This paper studies the error bounds for JDE of an 
unresolved target-group in the presence of clutter and missed detection using the random finite set (RFS) 
framework. We define a meaningful distance error for JDE of the unresolved target-group by modeling 
the state as a Bernoulli RFS. We derive the single and multiple sensor bounds on the distance error for an 
unresolved target-group observation model, which is based on the concept of the continuous individual 
target number. Maximum a posterior (MAP) detection criteria and unbiased estimation criteria are used 
in deriving the bounds. Examples 1 and 2 show the variation of the bounds with the probability of 
detection and clutter density for single and multiple sensors. Example 3 verifies the effectiveness of the 
bounds by indicating the performance limitations of an unresolved target-group cardinalized probability 
hypothesis density (UCPHD) filter.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In target tracking, most of the tracking algorithms are subop-
timal because of nonlinearity, non-Gaussian noises, clutter, missed 
detection, and measurement origination uncertainty [1, pp. 1–52]. 
In order to assess the achievable performance of the suboptimal 
filters, we need to derive their error lower bounds, which give an 
indication of performance limitations. In 1998, Tichavsky et al. [2]
proposed a recursive posterior Cramér–Rao lower bound (PCRLB) 
for evaluating the performance of existing suboptimal nonlinear 
filters. The PCRLB has been extended to the tracking problems 
where clutter is present [3–5], probability of detection is less than 
unity [6,7], and a target maneuvers [8].

The problem of joint detection and estimation (JDE) is an im-
portant research and has been studied in [9–11]. Tajer et al. [12]
offered a new framework for joint target detection and parame-
ter estimation using multiple-input multiple-output (MIMO) radar. 
Moustakides et al. [13] developed the optimum one- and two-step 
test for the JDE setup by combing the Bayesian formulation of the 
estimation sub-problem with suitable constraints on the detection 
sub-problem. Vo et al. [14] developed a multi-Bernoulli track be-
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fore detect (TBD) filter for the JDE of non-overlapping objects using 
image observations with low signal-to-noise ratio (SNR).

The PCRLB rests on the assumption that the target must ex-
ist. In other words, the PCRLB only refers to the estimation error 
but not the detection error. Therefore, it is very difficult to be 
applicable to the performance evaluation of the JDE approaches. 
Rezaeian et al. [15] derived the single sensor mean square error 
(MSE) bounds for the JDE of a single point target based on the 
random finite set (RFS). Tong et al. [16] presented recursive forms 
of error bounds for the RFS state and observation when the prob-
ability of detection is less than unity without clutter. The research 
on error bounds is very valuable for many real-world applications, 
such as sensor management [17], ballistic target tracking [18], per-
formance prediction, and passive tracking [19,20].

Unresolved targets (or target-groups) tracking (UTT), proposed 
first by Drummond, Blackman and Petrisor in 1990 [21], has 
become an important research in recent years. The problem of 
UTT arises because of the sensor resolution, high normalized tar-
get density, and sensor-to-target geometry [22,23]. An unresolved 
target-group refers to a cluster of two or more closely spaced in-
dividual targets, which cannot be completely resolved due to finite 
sensor resolution. In other words, treating a cluster of indistin-
guishable point targets as an entire object (especially if they move 
in a coordinated fashion according to a certain constraint or in-
terrelationship, it is usually reasonable to treat them as an entire
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Fig. 1. A sensor observes five point targets. Two targets lie in the same resolution cell and are not resolved. The sensor produces detections with measurement errors. One 
target is not detected due to missed detection and a false alarm appears due to clutter. We can say that the five point targets form an unresolved target-group.

object), they are idealized as an unresolved target-group [24]. 
In [25, pp. 432–433], an unresolved target-group is also called a 
“point target cluster”. In general, the number of detections gener-
ated by target-group will be different from the number of indi-
vidual targets in the target-group due to finite sensor resolution, 
sensor missed detection, and clutter as shown in Fig. 1.

Above all, an unresolved target-group of this paper is an entire 
object rather than only one point target. It is formed by a cluster 
of indistinguishable point targets.

Many approaches have been proposed for UTT. A comprehen-
sive overview of existing approaches to UTT up to 2004 is provided 
in [26]. Blair and Keel discuss the significance of finite radar reso-
lution in the context of UTT in [23]. Koch et al. [27,28] devised an 
approximate Bayesian solution to jointly estimating the geometric 
centroid and ellipsoidal shape of an unresolved target-group or ex-
tended target. A new variant of probabilistic multiple hypotheses 
tracker (PMHT) [29], which permits that multiple measurements 
originate from the same object, could be applied for UTT. Blom 
et al. [30] and Jeong et al. [31], respectively, studied the single and 
multiple sensor Bayesian filtering algorithms for maneuvering UTT. 
Nandakumaran et al. [32] and Gorji et al. [33], respectively, pro-
posed JDE algorithms for UTT using monopulse radar and colo-
cated MIMO radar. Within the RFS framework, Mahler developed 
a novel probability hypothesis density (PHD) filter for JDE of unre-
solved target-groups [34]. Then, the authors extended the method 
to unresolved target-group cardinalized PHD (UCPHD) filter [35]
and unresolved target-group multi-Bernoulli filter [36]. Mihaylova 
et al. [37] presented an overview of Bayesian sequential Monte 
Carlo methods for UTT. However, to the best of our knowledge, 
there has been no study on the JDE error bounds for UTT until 
now.

In this paper, we first present a meaningful distance error for 
the JDE of an unresolved target-group by modeling the state as a 
Bernoulli RFS. An observation model based on the concept of con-
tinuous target number is used to describe the likelihood function 
for the unresolved target-group according to [25, pp. 437–440]. 
Then we derive the single and multiple sensor bounds on the 
distance error for JDE of an unresolved target-group in the pres-
ence of missed detection and clutter. Maximum a posterior (MAP) 
detection criteria and unbiased estimation criteria are used in de-
riving the bounds. Finally, three numerical examples are presented 
using simulated data. Examples 1 and 2 show the variation of the 
bounds with probability of detection and clutter density in the 
cases of single sensor and multiple sensors. Example 3 verifies the 
effectiveness of the bounds by indicating the performance limita-
tions of a UCPHD filter [35].

In the current set up of this paper, our attention is restricted 
to the static JDE problem of a single unresolved target-group. Our 

future work will study the recursive extensions to the filtering 
problems by consideration of the unresolved target-group state 
evolution.

The rest of the paper is organized as follows. Section 2 de-
scribes the problem for JDE of an unresolved target-group based 
on the RFS. In Sections 3 and 4, we present the single and multi-
ple sensor MSE bounds for the JDE of an unresolved target-group, 
respectively. We present three numerical examples in Section 5. 
Conclusions and future work are given in Section 6. Relevant 
mathematical proofs of these conclusions are presented in Appen-
dices A–D.

2. Problem statement for JDE of an unresolved target-group 
based on RFS

An unresolved target-group state is modeled by an augmented 
vector of form

x′ = (a, x) ∈ X ′, (1)

where the l-dimensional vector x = [x1, . . . , xl]T ∈ Rl denotes a 
conventional single-target state, a denotes the expected number 
of individual targets involved in the unresolved target-group. Here 
we assume that the dimension of the state for each individual 
target in the group is the same. x′ models a cluster of a individ-
ual targets colocated at the single state x. According to the con-
cept of continuous individual target number proposed by Mahler 
[25, pp. 437–440], a ∈ A ⊂ R+ is a positive real number. X ′ de-
notes the state space of a single unresolved target-group, X ′ ⊂
R+ ×Rl .

We consider the problem of JDE of an unresolved target-group 
within the Bayesian framework. Therefore, the prior knowledge 
about the unresolved target-group must be used. We assume that 
the number of the unresolved target-groups in the surveillance 
area is at most one. Therefore, it is suitable to model the state 
set X ′ of the unresolved target-group as a Bernoulli RFS X ′ ∼
BX ′(r, f (x′)) with the probability density

π
(

X ′) =
{

1 − r, for X ′ = ∅,

r f (x′), for X ′ = {x′}, (2)

where r ∈ [0, 1] denotes the probability of X ′ �= ∅, f (x′) (defined 
on X ′) denotes the probability density of x′ . r represents the prior 
existence probability of an unresolved target-group and f (x′) rep-
resents the prior knowledge about state x′ if it exists. Therefore, 
the Bernoulli density π(X ′) encapsulates all the prior information 
about the unresolved target-group.
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