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Sequential detection provides a powerful solution to minimize the required number of observations for 
a given performance. Due to the non-stationary nature of clutter, this problem is recurrent in radar 
applications. In this paper, we develop a sequential parametric adaptive detection algorithm based on 
the approximation of clutter as an autoregressive process. Stationary segments are considered where 
both space and time windows are minimized, respectively, by using one secondary cell on each side of 
the cell under test and by applying a sequential test. We derive the distributions of the considered test 
statistic and give a closed form expression for the upper threshold whereas, the lower one is given as 
a simply numerical solution of a proper equation, rather than use the commonly Monte Carlo method 
based ones. The proposed approach is compared to an existing method based on a fixed sample size. 
Results obtained using synthetic and real data show that the proposed scheme reduces substantially the 
required sample size with detection performance close to that of the fixed sample size method.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Performance of detection in radar and other applications is 
clearly dependent on noise, in which the received signals are 
buried. In addition to the thermal noise inherent to any electronic 
system, the performance is also limited by the environment around 
the object to be detected. In fact, detection is disturbed by the 
unwanted echoes stemming from the target background. This is 
the case in radar, which scans the horizon of the ground or the 
sea. In such situations, the target background (mountains, rain, sea 
surface and ground) consists of receivers that provide interfering 
signals generally considered as random quantities, being added to 
the thermal noise, and form clutter. In practice, the most important 
characteristics that describe clutter and its effects on detection are 
its intensity, its distribution, the associated autocorrelation func-
tions and its stationarity. Detection of signals in non-Gaussian cor-
related and non-stationary clutter is a problem of interest in radar 
applications. In fact, recent advances in radar resolution have led to 
a target-like spiky clutter and the detection of signals embedded in 
non-Gaussian correlated noise. This problem has been widely stud-
ied, not only in the field of radar, but also in the communications 
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and sonar fields [1–3]. Therein, the compound Gaussian model is 
proposed to model correlated non-Gaussian clutter.

Sub-optimal approximations were derived for signals with un-
known parameters [4–7] and led to expressions equivalent to the 
Normalized Matched Filter (NMF), derived for the Gaussian case. 
In practice, adaptive techniques are used to estimate the covari-
ance matrix of the clutter (generally unknown and space and time 
varying), using secondary signal-free data taken from range cells, 
surrounding the Cell Under Test (CUT), which are assumed to share 
the same statistical properties. The Adaptive Normalized Matched 
Filter (ANMF) corresponds to a sub-optimal solution where the un-
known covariance matrix of the compound Gaussian clutter is esti-
mated. Two classes of methods are then to be distinguished, non-
parametric methods and the parametric ones. In a non-parametric 
approach, no assumption is made on clutter. However, the num-
ber of secondary cells must be at least equal to the sample size. In 
parametric methods, where the clutter is assumed to belong to a 
certain model, this condition can be relaxed.

One of the parametric methods consists of modeling clutter, 
using an autoregressive (AR) process. Several works dealing with 
such modeling can be found in the literature [8–12], where time 
varying autoregressive (TVAR) models are used to deal with non-
stationary clutter [13–15]. Another solution consists of dividing 
non-stationary clutter into assumed stationary segments, whose 
size is to be defined and minimized. Recall that in detection the-
ory, if the decision to accept or reject a considered hypothesis is 
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based on a fixed sample size (fixed number of observations), it is 
impossible to minimize both the error of the first kind (probabil-
ity of false alarm) and the error of the second kind (probability 
of miss detection), and the required sample size [16]. This is the 
case of the Neyman–Pearson criterion, which is the most used in 
radar [17]. Consequently, in adaptive approaches such as the ANMF 
detector, where secondary data is used to estimate unknown pa-
rameters, the use of a test based on a fixed sample size leads to 
two major problems, namely the choice of this size in a real-time 
context and the non-stationarity of the secondary signal-free data. 
The latter is of a major importance, as it requires the minimization, 
in both space and time, of the size of the secondary data, which 
does not always coincide with the desired performance. These two 
issues can be resolved respectively by taking a minimum number 
of secondary cells and using a detection criterion based on a time 
varying sample size.

In this paper, a sequential detection approach is proposed to 
overcome the two above mentioned problems. This theory, which 
allows the analysis of an incoming data flow, was developed by 
Wald [16]. Based on AR modeling, a parametric construction of 
the unknown clutter covariance matrix is used in the ANMF struc-
ture. Secondary cells are assumed to contain clutter only and the 
detection concerns targets corresponding to a known signal with 
unknown amplitude in the presence of non-stationary clutter. The 
detection performance is assessed using simulated targets in both 
synthetic and real radar clutter.

The remainder of the paper is organized as follows: Section 2
is dedicated to the model setup, the parametric-ANMF (PANMF) 
definition and the problem formulation. In Section 3, the proposed 
approach is presented. Section 4 presents some results obtained 
using synthetic and real data sets. Finally, Section 5 concludes the 
study.

2. Model setup and detection background

2.1. Model setup

The binary detection problem consists of deciding between two 
possible statistical hypotheses H0 and H1 given a random obser-
vation. In the special case of radar detection, the random observa-
tion corresponds to the received signal after the transmission of N
pulses. The two possible exclusive statistical situations are:

H0: the hypothesis of the absence of a target,
H1: the hypothesis of the presence of a target.
The commonly used rank-one model is given by [7]:{
H0 : x = c
H1 : x = δd + c

(1)

where x = [x(0), x(1), . . . , x(N − 1)]T is referred to as the received 
signal in the cell under test (CUT), c = [c(0), c(1), . . . , c(N − 1)]T

is clutter, δ is an unknown deterministic amplitude, and d =
[d(0), d(1), . . . , d(N − 1)]T is the target steering vector with com-
ponents dependent on fd , which is the assumed known Doppler 
frequency normalized with respect to the radar pulse repetition 
frequency (PRF).

We assume that:

d(n) = exp( j2π fdn), 0 ≤ n ≤ N − 1 (2)

Our work is based on the use of a set of secondary data 
from L range cells adjacent to the CUT. Secondary signals ck =
[ck(0), ck(1), . . . , ck(N − 1)]T , k = 1, . . . , L, are approximated in 
each cell in terms of stationary segments, where in each of them, 
the clutter is modeled as a stationary AR process. Assuming that 
the AR order p is known and the L secondary cells around the 
CUT contain only clutter, the signal ck issued from each cell, at a 

given range bin, can be modeled as an AR process according to the 
following equation [18]:

ck(n) = −
p∑

i=1

a(i)ck(n − i) + wk(n) (3)

for n = 0, . . . , N − 1 and k = 1, . . . , L.
Here a(i) is the i-th AR coefficient and wk denotes white noise 

driving the AR process (innovations).
The estimation of the AR coefficients is based on minimization 

of the global forward prediction square error for secondary data, 
issued from adjacent cells on both sides of the CUT. This ensures 
that all the background around the CUT is captured. The general 
form of AR model given in (3) can be rewritten in a matrix form 
as follows:

ck = −Cka + wk, k = 1, . . . , L (4)

where a denotes the vector of AR coefficients (VAR) : a = [a(1),

a(2), . . . , a(p)]T , wk is the innovation vector and Ck is given by:

Ck =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0
ck(0) 0 . . . 0
ck(1) ck(0) . . . 0

...
...

...
...

ck(p − 1) ck(p − 2) . . . ck(0)

ck(p) ck(p − 1) . . . ck(1)
...

...
...

...

ck(N − 2) ck(N − 3) . . . ck(N − p − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

For each range cell, the forward prediction square error is given 
by:

ρk =
N−1∑
n=0

∣∣ek(n)
∣∣2 =

N−1∑
n=0

∣∣ck(n) − ĉk(n)
∣∣2

, k = 1, . . . , L

Here ĉk(n) = − 
∑p

i=1 a(i)ck(n − i) is the linear forward prediction 
of ck(n). In a compact form, the square error is given by:

ρk = eH
k ek = (ck − ĉk)

H (ck − ĉk), k = 1, . . . , L

The global square error for all secondary signals, stemming from 
the L adjacent cells is given by:

ρ =
L∑

k=1

ρk =
L∑

k=1

(ck − ĉk)
H (ck − ĉk)

Replacing ĉk by −Cka in the last expression gives:

ρ =
L∑

k=1

(ck + Cka)H (ck + Cka) =
L∑

k=1

(
cH

k ck + aH CH
k ck + cH

k Cka

+ aH CH
k Cka

)
The estimate of the autoregressive vector a is then obtained by 
minimizing the global error:

â = −
(

L∑
k=1

CH
k Ck

)−1( L∑
k=1

CH
k ck

)
(6)

The condition of non-singularity of the matrix being inverted in 
(6) is given by [9]:

L ≥ p

(N − p)
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