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We study the problem of estimating an unknown deterministic signal that is observed through 
an unknown deterministic data matrix under additive noise. In particular, we present a minimax 
optimization framework to the least squares problems, where the estimator has imperfect data matrix 
and output vector information. We define the performance of an estimator relative to the performance of 
the optimal least squares (LS) estimator tuned to the underlying unknown data matrix and output vector, 
which is defined as the regret of the estimator. We then introduce an efficient robust LS estimation 
approach that minimizes this regret for the worst possible data matrix and output vector, where we 
refrain from any structural assumptions on the data. We demonstrate that minimizing this worst-case 
regret can be cast as a semi-definite programming (SDP) problem. We then consider the regularized 
and structured LS problems and present novel robust estimation methods by demonstrating that these 
problems can also be cast as SDP problems. We illustrate the merits of the proposed algorithms with 
respect to the well-known alternatives in the literature through our simulations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we investigate estimation of an unknown deter-
ministic signal that is observed through a deterministic data matrix 
under additive noise, which models a wide range of problems in 
signal processing applications [1–14]. In this framework, the data 
matrix and the output vector are not exactly known, however, es-
timates for both of them as well as uncertainty bounds on the 
estimates are given [2,8,15–19]. Since the model parameters are 
not known exactly, the performances of the classical LS estimators 
may significantly degrade, especially when the perturbations on 
the data matrix and the output vector are relatively high [9,15,16,
20–22]. Hence, robust estimation algorithms are needed to obtain 
a satisfactory performance under such perturbations. This generic 
framework models several real-life applications, which require es-
timation of a signal observed through a linear model [9,16]. As an 
example, this setup models realistic channel equalization scenar-
ios, where the data matrix represents a communication channel 
and the data vector is the transmitted information. The channel 
is usually unknown, especially for wireless communications ap-
plications, and possibly can be time-varying. Hence, in practical 
applications, the communication channel is estimated, where this 
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estimate is usually subject to distortions [9,16]. Under such pos-
sible perturbations, robust equalization methods can be used to 
obtain a more consistent and acceptable performance compared 
to the LS (or MMSE) equalizer. In this sense, this formulation is 
comprehensive and can be used in other applications such as in 
feedback control systems to estimate a desired data under imper-
fect system knowledge.

A prevalent approach to find robust solutions to such estima-
tion problems is the robust minimax LS method [8,9,16,23–27], in 
which the uncertainties in the data matrix and the output vec-
tor are incorporated into optimization framework via a minimax 
residual formulation and a worst-case optimization within the un-
certainty bounds is performed. Although the robust LS methods 
are able to minimize the LS error for the worst-case perturbations, 
they usually provide unsatisfactory results on the average [15,
23–27] due to their conservative nature. This issue is significantly 
exacerbated especially when the actual perturbations do not re-
sult in significant performance degradation. Another well-known 
approach to compensate for errors in the data matrix and the out-
put vector is the total least squares method (TLS) [15], which may 
yield undesirable results since it employs a conservative approach 
due to data de-regularization. On the other hand, the data matrix 
usually has a known special structure, such as Toeplitz and Han-
kel, in many linear regression problems [9,15]. Hence, in [9,15], the 
authors illustrate that the performances of the estimators based 
on minimax approaches improve when such a prior knowledge on 
data matrix structure is integrated into the problem formulation. 
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In all these methods, LS estimators under worst case perturbations 
are introduced to achieve robustness. However, due to this conser-
vative problem formulation, in many practical applications, these 
approaches yield unsatisfactory performances [2,8,18,28–30].

In order to counterbalance this conservative nature of the ro-
bust LS methods [9], we propose a novel robust LS approach that 
minimizes a worst case “regret” that is defined as the difference 
between the squared residual error and the smallest attainable 
squared residual error with an LS estimator [2,8,18,28–30]. By this 
regret formulation, we seek a linear estimator whose performance 
is as close as possible to that of the optimal estimator for all pos-
sible perturbations on the data matrix and the output vector. Our 
main goal in proposing the minimax regret formulation is to pro-
vide a trade-off between the robust LS methods tuned to the worst 
possible data parameters (under the uncertainty bounds) and the 
optimal LS estimator tuned to the underlying unknown model 
parameters. Minimax regret approaches have been presented in 
signal processing literature to alleviate the pessimistic nature of 
the worst case optimization methods [2,8,18,28–30]. In [18,29], 
linear minimax regret estimators are introduced to minimize the 
mean squared error (MSE) under imperfect knowledge of chan-
nel statistics and true parameters, respectively. In [28], a minimum 
mean squared error (MMSE) estimation technique under imperfect 
channel and data knowledge is investigated. In [2], these robust 
estimation methods are extended to flat fading channels to per-
form channel equalization. These methods are shown to provide a 
better average performance compared to the minimax estimators, 
whereas under large perturbations the robustness of the mini-
max estimators are superior to these competitive methods. On the 
other hand, in this paper, the optimization frameworks investi-
gated here are significantly different than [9,16,23–27], where the 
regret terms are directly adjoined in the cost functions. In particu-
lar, unlike [2,18,28,29], where the uncertainties are in the statistics 
of the transmitted signal or channel parameters, in this paper, the 
uncertainty is both on the data matrix and the output vector with-
out any statistical assumptions. While in [8], the authors have con-
sidered a similar framework, the results of this paper build upon 
them and provide a complete solution to the regret based robust 
LS estimation methods unlike [8]. We emphasize that perturbation 
bounds on the data matrix and the output vector heavily depend 
on the estimation algorithms employed to obtain them. Since our 
methods are formulated for given perturbation bounds, different 
estimation algorithms can be readily incorporated into our frame-
work with the corresponding perturbation bounds [16].

Our main contributions in this paper are as follows. i) We intro-
duce a novel and efficient robust LS estimation method in which 
we find the transmitted signal by minimizing the worst-case re-
gret, i.e., the worst-case difference between the residual error of 
the LS estimator and the residual error of the optimal LS estimator 
tuned to the underlying model. In this sense, we present a robust 
estimation method that achieves a tradeoff between the robust LS 
estimation methods and the direct LS estimation method tuned to 
the estimates of the data matrix and output vector. ii) We next 
propose a minimax regret formulation for the regularized LS es-
timation problem. iii) We then introduce a structured robust LS 
estimation method in which the data matrix is known to have 
a special structure such as Toeplitz or Hankel. iv) We demon-
strate that the robust estimation methods we propose can be cast 
as SDP problems, hence our methods can be efficiently imple-
mented in real-time [31]. v) In our simulations, we observe that 
our approaches provide better performance compared to the ro-
bust methods that are optimized with respect to the worst-case 
residual error [9,32], and the conventional methods that directly 
solve the estimation problem using the perturbed data.

The organization of the paper is as follows. An overview to the 
problem is provided in Section 2. In Section 3.1, we first introduce 

the LS estimation method based on our regret formulation, and 
then present the regularized LS estimation approach in Section 3.2. 
We then consider the structured LS approach in Section 3.3 and 
provide the explicit SDP formulations for all problems. The nu-
merical examples are demonstrated in Section 4. Finally, the paper 
concludes with certain remarks in Section 5.

2. System overview

2.1. Notation

In this paper, all vectors are column vectors and represented 
by boldface lowercase letters. Matrices are represented by boldface 
uppercase letters. For a matrix H, HH is the conjugate transpose, 
‖H‖ is the spectral norm, H+ is the pseudo-inverse, H > 0 rep-
resents a positive definite matrix and H ≥ 0 represents a positive 
semi-definite matrix. For a square matrix H, Tr(H) is the trace. Nat-
urally, for a vector x, ‖x‖ = √

xH x is the �2-norm. Here, 0 denotes 
a vector or matrix with all zero elements and the dimensions can 
be understood from the context. Similarly, I represents the appro-
priate sized identity matrix. The operator vec(·) is the vectorization 
operator, i.e., it stacks the columns of a matrix of dimension m × n
into an mn × 1 column vector. Finally, the operator ⊗ is the Kro-
necker product [33].

2.2. Problem description

We investigate the problem of estimating an unknown deter-
ministic vector x ∈ C

n which is observed through a deterministic 
data matrix. However, instead of the actual data matrix and the 
output vector, their estimates H ∈ C

m×n and y ∈ C
m and uncer-

tainty bounds on these estimates are provided. In this sense, our 
aim is to find a solution to the following data estimation problem

y ≈ Hx,

such that

y + �y = (H + �H)x,

for deterministic perturbations �H ∈ C
m×n , �y ∈ C

m . Although 
these perturbations are unknown, a bound on each perturbation 
is provided, i.e.,

‖�H‖ ≤ δH and ‖�y‖ ≤ δY ,

where δH , δY ≥ 0. In this sense, we refrain from any assumptions 
on the data matrix and the output vector, yet consider that the 
estimates H and y are at least accurate to “some degree” but their 
actual values under these uncertainties are completely unknown to 
the estimator.

Even in the presence of these uncertainties, the symbol vector 
x can be naively estimated by simply substituting the estimates H
and y into the LS estimator [10]. For the LS estimator we have

x̂ = H+y,

where H+ is the pseudo-inverse of H [33]. However, this approach 
yields unsatisfactory results, when the errors in the estimates of 
the data matrix and the output vector are relatively high [9,18,29,
32]. A common approach to find a robust solution is to employ a 
worst-case residual minimization [9]

x̂ = arg min
x∈Cn

max‖�H‖≤δH ,‖�y‖≤δY

∥∥(y + �y) − (H + �H)x
∥∥2

,

where x is chosen to minimize the worst-case residual error in 
the uncertainty region. However, since the solution is found with 
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