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Many components used in signal processing and communication applications, such as power amplifiers 
and analog-to-digital converters, are nonlinear and have a finite dynamic-range. The nonlinearity 
associated with these devices distorts the input, which can degrade the overall system performance. 
Signal-to-noise-plus-distortion ratio (SNDR) is a common metric to quantify the performance degradation. 
One way to mitigate nonlinear distortions is by maximizing the SNDR. In this paper, we analyze how to 
maximize the SNDR of the nonlinearities in optical wireless communication (OWC) systems. Specifically, 
we answer the question of how to optimally predistort a double-sided memory-less nonlinearity that has 
both a “turn-on” value and a maximum “saturation” value. We show that the SNDR-maximizing response 
given the constraints is a double-sided limiter with a certain linear gain and a certain bias value. Both 
the gain and the bias are functions of the probability density function (PDF) of the input signal and the 
noise power. We also find a lower bound of the nonlinear system capacity, which is given by the SNDR 
and an upper bound determined by dynamic signal-to-noise ratio (DSNR). An application of the results 
herein is to design predistortion linearization of nonlinear devices like light emitting diodes (LEDs).

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In addition to being nonlinear, many components in a signal 
processing or communication system have a dynamic-range con-
straint. For example, light emitting diodes (LEDs) are dynamic-
range-constrained devices that appear in intensity modulation (IM) 
and direct detection (DD) based optical wireless communication 
(OWC) systems [1,2]. To drive an LED, the input electric signal 
must be positive and exceed the turn-on voltage of the device. On 
the other hand, the signal is also limited by the saturation point 
or maximum permissible value of the LED. Thus, the dynamic-
range constraint can be modeled as two-sided clipping. The same 
situation may happen in other applications such as digital audio 
processing [3].

Both nonlinearity and clipping result in distortions which 
may cause system performance degradation. Signal-to-noise-plus-
distortion ratio (SNDR) is a commonly used metric to quantify the 
distortion that is uncorrelated with the signal [4–7]. Previous work 
in this area mainly concentrated on a family of amplitude-limited 
nonlinearities that is common in radio frequency (RF) system de-
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sign involving nonlinear components such as power amplifiers 
(PAs) and mixers.

Different from the previous work, our study discusses the class 
of nonlinearities with a two-sided dynamic-range constraint that 
is more commonly found in optical and acoustic systems. The 
authors in [8–12] illustrated the impact of LED nonlinearity and 
clipping noise in OWC systems. Some predistortion strategies were 
proposed in [13–15]. However, to the best of our knowledge, the 
optimal nonlinear mapping under the two-sided dynamic-range 
constraint has not been studied.

We consider two major differences from amplitude-limited 
nonlinearity. First, the signal will be subject to turn-on clipping 
and saturation clipping to meet the dynamic-range constraint. Sec-
ond, dc biasing must be used to shift the signal to an appropriate 
level to minimize distortion. In this paper, we will show that the 
ideal linearizer that maximizes the SNDR is a double-sided limiter 
that has an affine response. The parameters of the response can be 
calculated from the distribution of the input signal and the noise 
power.

In addition to deriving the SNDR-optimal predistorter, we also 
relate a lower bound on channel capacity to the SNDR, further 
motivating the SNDR considerations. Finally, we employ another 
common distortion metric, dynamic signal-to-noise ratio (DSNR) to 
provide an upper bound on the double-sided clipping channel.
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The remainder of this paper is organized as follows: Section 2
introduces the system model for dynamic-range-limited nonlinear-
ity and the corresponding SNDR definition. In Section 3, we derive 
the optimal nonlinear mapping that maximizes the SNDR and il-
lustrate some examples. In Section 4, we relate the SNDR to the 
capacity of the nonlinear channel. Finally, Section 5 concludes the 
paper. Detailed proofs in this paper are deferred to the Appendices.

2. System model and SNDR definition

2.1. System model

Let us consider a system modeled by

yo(t) = ho
[
xo(t)

] + v(t) (1)

where xo(t) is a real-valued signal with mean μx and variance σ 2
x ; 

v(t) is a zero-mean additive noise process with variance σ 2
v ; ho(·)

is a memoryless nonlinear mapping with dynamic-range constraint 
A1 ≤ ho[xo(t)] ≤ A2.

For notational simplicity, we omit the t-dependence in the 
memoryless system and replace ho(·) and xo(t) by h(·) = ho(·) − A1
and x = xo − μx . Then we have an equivalent system modeled by

y = h(x) + v (2)

where h(·) is a memoryless nonlinear mapping with dynamic-
range constraint 0 ≤ h(x) ≤ A = A2 − A1 and x is a zero-mean 
signal with variance σ 2

x .

2.2. SNDR definition

According to Bussgang’s Theorem [16], the nonlinear mapping 
in (2) can be decomposed as

h(x) = αx + d (3)

where d is the distortion caused by h(·) and α is a constant, se-
lected so that d is uncorrelated with x, i.e., E[xd] = 0. Thus

α = E[xh(x)] − E[xd]
E[x2] = E[xh(x)]

E[x2] = E[xh(x)]
σ 2

x
. (4)

The distortion power is given by

εd = E
[
d2] − E2[d]

= E
[
h2(x)

] − α2σ 2
x − E2[h(x)

]
, (5)

where we use the notation E2(·) = [E(·)]2. The signal-to-noise-
plus-distortion ratio (SNDR) is defined as

SNDR = α2σ 2
x

εd + σ 2
v

= E2[xh(x)]/σ 2
x

E[h2(x)] − E2[xh(x)]/σ 2
x − E2[h(x)] + σ 2

v
. (6)

The definition of SNDR here is a little bit different from that 
in [7], because all the signals are real and the distortion con-
tains dc biasing. Thus, the distortion power is modeled as variance 
rather than the secondary moment.

We see from (6) that the SNDR is related to the distribution 
of x, the noise power σ 2

v , and the nonlinear mapping h(·). Our aim 
in the next section is to determine the function h(·) that max-
imizes the SNDR given a signal distribution and the two-sided 
clipping constraint.

Fig. 1. An example of nonlinear mapping g(·) that satisfies the 0 ≤ g(·) ≤ 1 con-
straint.

3. SNDR optimization and examples

3.1. Optimization of SNDR

Similar to [7], let us use a function g(·) to normalize the non-
linear mapping h(·):

h(x) = Ag

(
x

σx

)
(7)

where 0 ≤ g(·) ≤ 1. Let γ = x/σx and substitute (7) into (6) to 
obtain

SNDR = E2[γ g(γ )]
E[g2(γ )] − E2[γ g(γ )] − E2[g(γ )] + σ 2

v /A2

= E2[γ g(γ )]
var[g(γ )] − E2[γ g(γ )] + σ 2

v /A2
(8)

where var[g(γ )] = E[g2(γ )] − E2[g(γ )] is the variance of g(γ ).
The SNDR optimization problem can be stated as follows:

max
g(·)

0≤g(·)≤1

SNDR (9)

for a given distribution of γ , dynamic-range A and noise power 
σ 2

v .
Fig. 1 illustrates an example of the g(·), where the region of γ

is divided into three sets L, S and U :

g(γ ) = 0, for γ ∈ L; (10)

0 < g(γ ) < 1, for γ ∈ S; (11)

g(γ ) = 1, for γ ∈ U . (12)

Thus, to determine a nonlinear mapping g(·), we need to find the 
sets L, S , U and the shape of the function g(·) in S .

We will solve this problem with the following steps:

1. find the optimal g(·) given L, S , U ;
2. show that S should be as large as possible;
3. determine L and U for the optimal solution.

Lemma 1. Assume that the sets L, S and U are known, and L ∪ S ∪
U = R. The g(·) function that maximizes the SNDR expression in (8) is 
of the form

g(γ ) = γ

η
+ β (13)

where
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