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In this paper, a new scaling based information hiding approach with high robustness against noise 
and gain attack is presented. The host signal is assumed to be stationary Gaussian with first-order 
autoregressive model. For data embedding, the host signal is divided into two parts, and just one patch 
is manipulated while the other one is kept unchanged for parameter estimation. A maximum likelihood 
(ML) decoder is proposed which uses the ratio of samples for decoding the watermarked data. Due to 
the decorrelating property of the proposed decoder, it is very efficient for watermarking highly correlated 
signals for which the decoding process is not straightforward. By calculating the distribution of the 
decision variable, the performance of the decoder is analytically studied. To verify the validity of the 
proposed algorithm, it is applied to artificial Gaussian autoregressive signals. Simulation results for highly 
correlated host signals confirm the robustness of our decoder.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Digital watermarking embeds information within a digital work 
so that the inserted data becomes part of its medium. This tech-
nique serves various purposes such as intellectual right protec-
tion, broadcast monitoring, data authentication, data indexing, and 
metadata insertion [1–4]. A digital watermarking system should 
successfully satisfy trade-offs between conflicting requirements of 
perceptual transparency, data capacity and robustness against at-
tacks [5]. There exists a trade-off in satisfying these requirements. 
Depending on the application, the importance of each requirement 
varies. For example, for secret communication purposes, noise im-
munity and data rate are more important, while for data authenti-
cation, imperceptibly and robustness are more significant.

While increasing the strength of the watermark obviously pro-
vides higher resistance against attacks, more intelligent designs 
select image features that are relatively more immune. This has 
led to a number of algorithms that make watermark insertion de-
pendent upon image content. This principle is implemented widely 
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in multiplicative watermarking [6] and recently in a scaling-based 
[7] method. To effectively hide the information, these approaches 
often employ various transform domains such as Discrete Cosine 
Transform (DCT), Discrete Fourier Transform (DFT), and Discrete 
Wavelet Transform (DWT) [8–10], which concentrate the energy 
of the host signal in fewer components. Since correlation detec-
tion is suboptimal for multiplicative watermarking in the trans-
form domain, several alternative optimum and locally optimum 
decoders have been proposed [6,11–16]. Cheng and Huang [11]
proposed a robust optimum detector for the multiplicative rule in 
the DCT, DWT and DFT domains. In their algorithm, they modeled 
the distribution of high frequency coefficients of DCT and DWT as 
Generalized Gaussian while they assumed the magnitude of DFT 
coefficients to have Weibull distribution.

In most current approaches [6–8,12,14–16], the transform co-
efficients are assumed to be i.i.d. (independent identically dis-
tributed) for convenience while this is not necessarily true in all 
environments. In fact there are steganalysis systems that explic-
itly use the dependency of DCT and DWT coefficients at inter-
block level or at intra-block level [17,18]. These authors model 
the dependence of transform coefficients with Markov chains. 
Furthermore, there are several studies that exploit the correla-
tion of discrete trigonometric transform (DTT) coefficients for data 
compression [19,20,22]. For instance, the variance spectrum of the 
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DCT coefficients in sub-blocks of images is characterized with an 
autoregressive (AR) model in [20], or the 2-D block spectrum of 
natural images is estimated by 1-D AR model [21]. Recently, Hsu 
and Liu [22] showed that AR modeling can be considered for tem-
poral/spectral envelope of DTT coefficients.

This paper brings two new contributions to the watermarking 
methodologies. First, we develop a blind method that is robust to 
local gain attacks, that is spatial modulation. If the watermarked 
samples are subjected to modifications with spatially varying gain, 
it is desirable that the data hiding scheme preserve its watermark 
after this attack. The proposed method to this effect is a general-
ization of the data hiding scheme [7], the multi-bit scaling-based 
method, to a blind scheme. The method in [7] assumes the ex-
istence of a side information channel, but in practice it may be 
difficult to guarantee any such secure channel. Second, our method 
does not assume the cover signal samples to be i.i.d or uncorre-
lated. We assume autoregressive model of order one (AR(1)) to 
represent the host signal, not only because it is a common model 
for images, but it also leads to a closed form solution in our wa-
termarking system. Similar to the patchwork approach [23], we 
separate the host signal into two subsets. One of them is left intact 
and serves for parameter estimation at the decoder site. The terms 
of the other subset are watermarked with the so-called scaling-
based watermarking, which uses slight amplification or attenua-
tions depending on the watermark bit. The strength of the algo-
rithm comes from the fact that it is the ratio of samples that carry 
the watermark information instead of sample values themselves. 
This makes the algorithm not only suitable for highly correlated 
signals but also invariant to gain attack. The method is studied 
analytically using exact derivations to the extent possible, and ap-
proximations are introduced when analysis becomes intractable.

The rest of the paper is organized as follows: Statistical models 
of the signals occurring in the embedding and decoding stages are 
presented in Section 2. In Section 3, the ratio-based watermark-
ing method is introduced. Performance analysis of the proposed 
method is given in Section 4. Section 5 contains simulation results 
to investigate the robustness of the proposed approach against 
AWGN attack and performance comparisons vis-a-vis other water-
marking techniques. Finally, Section 6 concludes the paper.

2. Signal modeling

In this section, we show certain statistical properties of the car-
rier signal relevant for our watermarking algorithm. We assume 
that the cover signal is first-order Gauss–Markov signal, it is highly 
correlated, but it has low coefficient of variation. For example, the 
approximation band of the wavelet decomposed images has this 
property as discussed in Appendix A, hence the signal model is 
not restrictive. We can obtain a closed form solution for this signal 
model, but otherwise our watermarking algorithm applies to other 
signals as well. However for the other signal models a close form 
decoder may not exist. It is worth mentioning that we assume 
zig–zag scanning in ordering the image coefficients throughout the 
paper.

Let, u be this Gauss–Markov host sequence with mean μ, vari-
ance σ 2, and correlation coefficient ρ . The N samples u1, u2, ..., uN

of this parent sequence are split into two child sequences x
and y consisting of the odd and even indexed terms, respec-
tively: xi = u2i−1, yi = u2i , i = 1, 2, ..., N

2 . These x and y are 
also Gauss–Markov subsequences with means and variances iden-
tical to those of their parent, that is, with x = N (μx, σ 2

x ) and 
y =N (μy, σ 2

y ). Their auto-correlation coefficients are ρ2 and their 
cross-correlation coefficient is ρ .

The carrier signal, z, is another sequence formed as the term-
wise ratio of the two subsequences. The ratio sequence, as dis-

cussed in Section 3.2, will be used to build our optimum water-
marking decoder.

We construct the ratio sequence z as follows:

zi = xi

yi
= u2i−1

u2i
, i = 1, ...,

N

2
. (1)

The probability density function of z for μy �= 0 is given as [25]:
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,

r = 1 − ρ2, and Φ(t) = ∫ t
−∞

1√
2π

e− 1
2 r2

dr. In the special case of 
zero-mean variates, that is for μx = μy = 0, the distribution be-
comes Cauchy [24].

As we will see here, for the case of non zero μx and μy , and 
σy � μy , σx � μx , the distribution of z = x

y can be well approxi-
mated by a Gaussian distribution. As shown in Appendix A, these 
small variance-to-mean conditions occur easily in the approxima-
tion bands of the wavelet decomposition of images. The parame-
ters μz and σ 2

z of the Gaussian approximation can be computed 
as follows. If we define x̄ = x −μx , ȳ = y −μy , and z̄ = z −μz , we 
have:
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Taking the expectation of both sides of (3) and considering the fact 
that As E(x̄) = E( ȳ) = E(z̄) = 0, and E(x̄ ȳ) = E((x −μx)(y −μy)) =
ρσxσy , we have:
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(4)

Subtracting (3) from (4), we have:
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Thus:
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Now, to compute E(x̄2 ȳ) consider that we write ȳ as ȳ = r1 x̄ + r2
where r1 represents the correlated part of ȳ and r2 represents the 
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