
On discrete Gauss– Hermite functions and eigenvectors of the
discrete Fourier transform

Balu Santhanam a,�, Thalanayar S. Santhanam b

a Department of Electrical and Computer Engineering, MSC01 1100 1, University of New Mexico, Albuquerque, NM 87131-0001, USA
b Department of Physics, Saint Louis University, Missouri, MO 63103, USA

a r t i c l e i n f o

Article history:

Received 12 November 2007

Received in revised form

11 March 2008

Accepted 26 May 2008
Available online 20 June 2008

Keywords:

Discrete Fourier transform

Eigenvalues

Eigenvectors

Generalized K-symmetric matrices

Harmonic oscillator

Gauss–Hermite functions

a b s t r a c t

The problem of furnishing an orthogonal basis of eigenvectors for the discrete Fourier

transform (DFT) is fundamental to signal processing and also a key step in the recent

development of discrete fractional Fourier transforms with projected applications in

data multiplexing, compression, and hiding. Existing solutions toward furnishing this

basis of DFT eigenvectors are based on the commuting matrix framework. However,

none of the existing approaches are able to furnish a commuting matrix where both the

eigenvalue spectrum and the eigenvectors are a close match to corresponding properties

of the continuous differential Gauss–Hermite (G–H) operator. Furthermore, any linear

combination of commuting matrices produced by existing approaches also commutes

with the DFT, thereby bringing up issues of uniqueness.

In this paper, inspired by concepts from quantum mechanics in finite dimensions, we

present an approach that furnishes a basis of orthogonal eigenvectors for both versions

of the DFT. This approach furnishes a commuting matrix whose eigenvalue spectrum is a

very close approximation to that of the G–H differential operator and in the process

furnishes two generators of the group of matrices that commute with the DFT.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Conventional Fourier analysis treats frequency and
time as orthogonal variables and consequently is only
suitable for the analysis of signals with stationary
frequency content. The fractional Fourier transform (FRFT),
an angular generalization of the Fourier transform,
enables the analysis of waveforms, such as chirps, that
possess time–frequency coupling. The continuous Fourier
integral transform of a finite energy signal is defined via
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1ffiffiffiffiffiffi
2p
p

Z 1
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xðtÞ expð�jotÞdt ¼FðxðtÞÞ.

Gauss–Hermite (G–H) functions defined by
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where hnðtÞ is the nth-order Hermite polynomial, are
solutions to the second-order differential equation

d2x

dt2
� ðt2 þ lÞxðtÞ ¼ 0.

They are eigenfunctions of the G–H differential operator

HðxðtÞÞ ¼ ðD2 � t2IÞxðtÞ ¼ �ð2nþ 1ÞxðtÞ,

with a corresponding eigenvalue of ln ¼ �ð2nþ 1Þ, where
D;I denote the derivative and identity operators. They
are also eigenfunctions of the Fourier integral operator

FðHnðtÞÞ ¼ exp �jn
p
2

� �
HnðtÞ,
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with a corresponding eigenvalue of ln ¼ expð�jnp=2Þ.
These G–H functions are also eigenfunctions of the FRFT
defined via

XaðuÞ ¼

Z 1
�1

xðtÞKaðt;uÞdt,

Kaðt;uÞ ¼
X1

n¼�1

expð�jnaÞHnðtÞHnðuÞ.

Quantum mechanics as it pertains to the harmonic
oscillator connects the canonical variables, position, and
momentum through the Fourier integral operator F via [1,2]

F ¼ exp j
p
4
ðp̂

2
þ q̂

2
� 1Þ

� �
,

where q̂ and p̂ are the position and momentum operators
that are related through a similarity transformation [2]:

p̂ ¼Fq̂Fy; p̂ ¼ �j
d

dq
,

where Fy denotes the Hermitian adjoint of F and p; q

denote the eigenvalues of their corresponding operators.
In the continuous case the expression inside the expo-
nential is exactly the G–H differential operator:

ðq̂
2
þ p̂

2
ÞxðqÞ ¼ �

d2

dq2
xðqÞ þ q2xðqÞ ¼ �HðxðqÞÞ.

Consequently, G–H functions are also the eigenfunctions
of the quantum harmonic oscillator. The position and
momentum1 operators furthermore do not commute and
their commutator corresponds to the identity [2]

½q̂; p̂� ¼ q̂p̂� p̂q̂ ¼ jI. (1)

The connection between the G–H operator and the Fourier
transform F can be further expressed as

ðp̂
2
þ q̂

2
� 1ÞxðqÞ ¼ �ðHþ 1ÞðxðqÞÞ ¼

�4j

p
logFðxðqÞÞ. (2)

This relation implies that in the continuous case the G–H
operator is related to the logarithm of the Fourier transform.

2. Prior work

The eigenvalues and eigenvectors of the discrete
Fourier transform (DFT) matrix have been of interest from
early work [3], where the DFT eigenvalue problem was
discussed in detail. Work in [4] outlines an analytical
expression for the eigenvectors of the DFT corresponding
to distinct eigenvalues. However, this expression involves
infinite sums and is not computable. Recent efforts to
develop a discrete version of the FRFT have focussed on
the DFT and its centralized version and on generating an
orthogonal basis of eigenvectors for the DFT by furnishing
a commuting matrix that has a non-degenerate eigenva-
lue spectrum and shares a common basis of eigenvectors
with the DFT. These approaches, however, do not yield a
unique discretization since the sum or the product of
matrices that commute with the DFT also commutes with

the DFT. Our goal in this paper is to define a discrete
equivalent of the G–H differential operator H that will
furnish the basis for both the centered and off-centered
versions of the DFT matrix. This framework will enable the
definition of a discrete version of the FRFT and also serve
as the discrete equivalent of the G–H operator with
eigenvalues and eigenvectors that closely resemble those
of the continuous counterpart.

Existing approaches toward obtaining an orthogonal
basis of eigenvectors for the DFT can be grouped into two
basic categories. The first approach called the S matrix
approach or the Harper matrix approach [5–7] is based on
replacing the derivatives in the G–H differential equation
with finite differences thereby converting the differential
equation into a difference equation. The approach furnishes
an almost tridiagonal (Harper) matrix that commutes with
the DFT matrix and consequently furnishes a basis of
orthogonal DFT eigenvectors when N is not a multiple of
four. Other numerical approaches that use orthogonal
projections to furnish the eigenvectors of the Harper matrix
S have been recently investigated in [8]. As shown in [5], the
Harper matrix does not converge to the G–H operator in the
limit, but rather to the Mathieu differential operator.
Furthermore, the eigenvalue spectrum is not the linear
spectrum with uniform spacing needed for consideration as
the discrete G–H operator as described in Fig. 1.

The second approach pioneered by Grünbaum [9] and
later refined in [10] is an algebraic approach that furnishes
tridiagonal matrices that commute with both the centered
and the off-centered versions of the DFT. It was shown in [9]
that the commuting matrix in the limit converges to the
G–H differential operator. However, the eigenvalues of the
matrix do not exhibit the uniform integer spacing needed to
be considered a viable candidate for the discrete G–H
operator. Since the sum and the product of the different
commuting matrices also commute with the DFT, numerous
other commuting matrices can be furnished and the
question of uniqueness of the commuting matrix approach
arises. Recently, a combination of the commuting matrices
from the Harper and Grünbaum matrix approaches have
been used to furnish a basis of eigenvectors for the DFT
[11,12], where the squared norm of error between the
eigenvectors and the corresponding discrete G–H function
was used to quantify the accuracy of the eigenvectors.

In this paper, we adopt a physical approach to develop
a unique commuting matrix framework for both the CDFT
and the DFT that: (a) furnishes a full orthogonal basis of
eigenvectors resembling G–H functions via the eigenvalue
problem for generalized K-symmetric matrices [13],
(b) has an eigenvalue spectrum very close to that of H,
(c) converges to H in the limit, and (d) is quadratic in
position and momentum analogous to the Hamiltonian of
the quantum-mechanical harmonic oscillator.

3. Discrete G–H operator

3.1. Centered case

Toward formulating a physically meaningful, discrete,
and computable version of the G–H operator, we borrow
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1 Although the analysis done here is done in terms of the quantum-

mechanical variables p̂; q̂, they can be any pair of canonical variables

such as time and frequency.

B. Santhanam, T.S. Santhanam / Signal Processing 88 (2008) 2738–2746 2739



Download	English	Version:

https://daneshyari.com/en/article/564592

Download	Persian	Version:

https://daneshyari.com/article/564592

Daneshyari.com

https://daneshyari.com/en/article/564592
https://daneshyari.com/article/564592
https://daneshyari.com/

