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a b s t r a c t

Still image coding occasionally uses linear predictive coding together with multi-

resolution decompositions, as may be found in several papers. Those related approaches

do not take into account all the information available at the decoder in the prediction

stage. In this paper, we introduce an adapted generalized lifting scheme in which the

predictor is built upon two filters, leading to taking advantage of all the available

information. With this structure included in a multi-resolution decomposition frame-

work, we study two kinds of adaptation based on least-squares estimation, according to

different assumptions, which are either a global or a local second order stationarity of

the image. The efficiency in lossless coding of these decompositions is shown on

synthetic images and their performances are compared with those of well-known

codecs (Sþ P, JPEG-LS, JPEG2000, CALIC) on actual images. Four images’ families are

distinguished: natural, MRI medical, satellite and textures associated with fingerprints.

On natural and medical images, the performances of our codecs do not exceed those of

classical codecs. Now for satellite images and textures, they present a slightly noticeable

(about 0.05–0.08 bpp) coding gain compared to the others that permit a progressive

coding in resolution, but with a greater coding time.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

The lossless image compression finds applications in
satellite and medical image processing, where a lossy or
near lossless coding is not satisfactory. However, in many
applications of lossless coding, from time to time, lossless
at full resolution is not possible because the transmission
channel has a limited bandpass and then coding with a
smaller resolution is better than no transmission at all. In
other applications, customers need lossless coding at full
resolution and other ones are satisfied with smaller

resolutions of the same images. Therefore, embedded
progressive coding from low resolution to lossless full
resolution can be a good compromise in many applica-
tions. This coding allows to reconstruct from a truncated
bit flow a decompressed image, which has a smaller
resolution than the encoded one. As and when the data
are received, the user is capable of enhancing the image
resolution, until it reaches the original quality and
resolution.

It is well known that bi-orthogonal wavelet decomposi-
tions are efficient for lossy and near lossless image
compression [1], this is why they are used in the ISO
JPEG2000 standard. The lifting scheme, introduced by
Sweldens [2] in order to construct wavelet decompositions
by a simple, reversible and fast process, found quickly its
main application in lossless image compression. In this
case, a nonlinear filter bank with critical sampling and
perfect reconstruction is obtained, with nonlinearities

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/sigpro

Signal Processing

ARTICLE IN PRESS

0165-1684/$ - see front matter & 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.sigpro.2008.06.003

� Corresponding author.

E-mail addresses: h_bekkouche@yahoo.com,

Hocine.Bekkouche@supelec.fr (H. Bekkouche),

Michel.Barret@supelec.fr (M. Barret),

Jacques.Oksman@supelec.fr (J. Oksman).
1 This work was partially supported by the Lorraine Region.

Signal Processing 88 (2008) 2790– 2803

www.sciencedirect.com/science/journal/sigpro
www.elsevier.com/locate/sigpro
dx.doi.org/10.1016/j.sigpro.2008.06.003
mailto:h_bekkouche@yahoo.com,
mailto:Hocine.Bekkouche@supelec.fr
mailto:Michel.Barret@supelec.fr
mailto:Jacques.Oksman@supelec.fr


which are limited to truncations (i.e., rounding to the
nearest integer) [3]. Moreover, Daubechies and Sweldens
showed that any bi-orthogonal wavelet decomposition
with FIR (finite impulse response) filters can be repre-
sented by a lifting scheme [4] and, therefore, all the well-
known wavelets used in lossy image codecs can be quite
closely approximated by integer-to-integer wavelets. The
performances in lossy and lossless image compression of
integer-to-integer wavelets and the Sþ P transform by Said
and Pearlman [5] are evaluated in [6]. Hampson and
Pesquet [7] proposed a structure which is more general
than the lifting scheme, with an arbitrary number of
channels and arbitrary nonlinear filters. It is interesting to
note the simplicity of this structure and the way the perfect
reconstruction is performed in an inherent manner by a
synthesis filter bank ‘‘mirror’’ of the analysis filter bank, as
in the lifting scheme. That structure, with nonlinear
prediction filters based on image segmentations, has been
applied for still image and video coding by Amonou and
Duhamel [8].

In the standard wavelet decompositions, the filter
coefficients are fixed: they do not adapt to the image as
best possible. However, the lifting scheme gives an
interpretation in terms of estimation (or prediction) of
perfect reconstruction filter banks, associated with multi-
resolution decompositions. Now, linear prediction coding
(LPC) proved its great efficiency for speech coding; it
found applications in mobile telephones. Therefore it is
natural to study LPC in image coding. About 15 years ago,
adaptive linear predictions using least-squares estimation
(LSE) algorithms were tested for image compression
(see [9] and its bibliography, or later [10]), but they were
not associated with dyadic decompositions and conse-
quently they were not suitable for progressive coding.
More recently, Gerek and C- etin [11] used the lifting
scheme with adaptive predict steps: the filter coefficients
were updated to each pixel of the image, thanks to a
conventional stochastic gradient algorithm, in order to
minimize the variance of the detail signal. Boulgouris et al.
[12], expressed each filter of the optimal M-subband
analysis filter bank as a function of the power spectral
density (PSD) of the input image. They assumed the entire
image is a wide sense stationary (WSS) signal. The
optimum is achieved by minimizing the mean squared
error of prediction for each of the M � 1 detail signals.
Two kinds of parameterized models were assumed for the
PSD of the image, i.e., the adaptation is optimum only if
the PSD of the image belongs to a set of two models. The
filters of the update steps did not adapt to the image, they
were identical with those encountered in the lifting
scheme of well-known wavelets. To improve the predic-
tion whenever the global WSS assumption is invalid, the
linear predictors were enhanced by nonlinear means,
namely by directional post-processing in the quincunx
decimation case, and by adaptive-length post-processing
in the separable (row-column) decimation case. In [13],
the authors chose locally, among a finite dictionary of
wavelet filters, the filter that must be applied to the
current pixel depending on its proximity with an outline:
the closer the pixel is to an outline, the smaller the
impulse response support of the analysis filter. In [14], the

authors studied the optimization of a lifting scheme (for
both the predict and update steps) associated with
twofold quincunx decimation. They imposed constraints
to the filters in order to avoid overflow and they applied
their filter banks to lossy image compression.

In each of the above mentioned papers with adapted
prediction filters, we can notice that all the information
available at the decoder is not taken into account in the
‘‘predict’’ step.2 Indeed, after the twofold decimation, the
pixels of a subband, say x2, are predicted as a linear
combination of the pixels of the other subband, say x1, and
the pixels of subband x2 are not involved in the
observation vector, whereas they could be! As is done in
the classical LPC. In [15], we introduced an adapted
integer-to-integer multi-resolution decomposition, based
on LSE and assuming global second order stationarity of
the image, which takes advantage of all the information
available at the decoder, and we applied it to lossless
image coding. In [16], we completed this decomposition
by introducing another adaptation, which assumes only
local stationarity in the image. The reason that led us to
carry out this study lies in the fact that the image models
are not fully appropriate for entire images, they are better
justified for well-chosen parts of the images taken
separately. Those parts are the textured regions that can
be found in most kinds of images. Then, in [17] we
compared the performances of these decompositions in
lossless coding of satellite and medical MRI images with
well-known codecs.

In this paper, we complete the results of the conference
papers [15–17] and provide more details and full proofs.
First, we present the adapted generalized lifting scheme
framework, which is shared both by locally and globally
adapted estimation methods—we shall call them, respec-
tively, LAE and GAE below. In Sections 3.1 and 3.2, the GAE
and LAE methods are explained in details. Their efficiency
in lossless coding is shown on synthetic images (Section 4)
and their performances are compared with those of well-
known codecs (Sþ P [5,18], LOCO I [19,20], CALIC [21,22],
and Jasper [23]) on actual images (Section 5). We
considered four families of images (natural, medical MRI,
satellite and textures with fingerprints).

In the following, Z denotes the set of all integers. For a
matrix A, AT denotes its transpose. Underlined lower case
letters denote vectors, which are identified with the
column matrix of their coordinates. The symbol E denotes
the mathematical expectation.

2. Adapted generalized lifting schemes

In this section we begin by presenting a short overview
of the generalized lifting scheme in the mono-dimensional
(1-D) case, then we extend it to the 2-D case, clarifying
the integer-to-integer variant and the adaptation of the
filters. Furthermore we explain how the generalized lifting
scheme can be used in a multi-resolution framework,
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2 We should say ‘‘estimation’’ step, since it is not a prediction

problem, but an estimation problem in estimation theory; nevertheless

we chose the vocabulary used in filter bank theory.
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