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The performance of space–time adaptive processing (STAP) may degrade dramatically if some undesired 
mismatches exist in real scenarios, such as array calibration error, distorted antenna shape, direction of 
arrival (DOA) and Doppler frequency mismatches between the actual and presumed responses to the 
desired target signal, insufficient training data samples and so on. In this paper, we develop a new 
approach to STAP that is robust to different variations in real scenarios. This method is based on the 
iterative optimization for the spatial–temporal separate filter. It is confirmed that this method belongs 
to the class of colored loading algorithms. The loading factor can be efficiently calculated based on the 
known level of the uncertainty mismatch sets of spatial temporal steering vectors. Computer simulations 
demonstrate that the proposed robust two-dimensional (2-D) beamformer with colored loading has 
attained better performance as compared to the conventional STAP algorithm.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, adaptive array beamforming has been widely 
used in radar, sonar, wireless communications and other areas 
[1–5]. When the desired array steering vector is known accu-
rately, adaptive array beamforming has superior performance on 
interference-plus-noise suppression. However, if some undesired 
mismatches exist in the environment, such as look direction er-
ror, array calibration error, distorted antenna shape, source local 
scattering and so on, it is known that the performance of adaptive 
beamforming will degrade dramatically. For one dimensional spa-
tial beamforming, some effective methods have been presented to 
overcome the problem of the undesired mismatches. These meth-
ods include the robust Capon beamforming (RCB) [8], doubly con-
strained robust Capon beamformer (DCRCB) [9] and worst case 
optimization [10], which are widely applied in robust array sig-
nal processing [6–10].

Space–time adaptive processing (STAP) is a powerful tool for 
clutter suppression with a moving platform and therefore has been 
widely used in airborne radar [11–16]. However, it is well known 
that the performance of STAP may degrade severely in the pres-
ence of mismatches between the actual and presumed array re-
sponses to the desired signal when the supported samples are 
limited [17,18]. Diagonal loading [19] is an effective solution to 
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mitigate these deleterious factors in practice, which is called ro-
bust STAP. Robust STAP uses diagonal loading technique to prevent 
high sidelobes and distorted main beams caused by the limited 
training samples, signal mismatch and non-stationary interference. 
The essence of robust STAP is to utilize the robust adaptive ar-
ray beamforming [6–10] in space and time domain jointly. As the 
coupling exists in the spatial–temporal domain, conventional di-
agonal loading methods for STAP are ad hoc and cannot obtain 
loading factors in space and time domain separately. In addition, 
the mismatch information is different in space and time domain 
(i.e., the Doppler frequency mismatch is different from the array 
antenna mismatch). Loading factors for space and time domain will 
be different. Therefore, we should deal with the space and time in-
formation independently.

In this paper, we consider the mismatch information of space 
and time separately, and propose a new technique called the col-
ored loading approach that augments the sample covariance ma-
trix of STAP processor in a manner similar to that of traditional 
diagonal loading. This technique is a generalization of diagonal 
loading in which the covariance matrix is augmented with a col-
ored matrix as opposed to using the identity matrix. The attrac-
tiveness of this technique is that loading factors for space and 
time domain are separated and can be obtained by the respec-
tive iterative optimization. This method has better performance 
compared with conventional diagonal loading STAP processor. In 
addition, these loading factors for either spatial or temporal do-
main can be precisely calculated by uncertainty mismatch sets. 
Numerical simulations show that the colored loading approach 
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is superior to conventional STAP in terms of the optimal output 
signal-to-interference plus noise ratio (SINR) in the snapshot defi-
cient scenario.

This paper is organized as follows. In Section 2, we first give 
the signal model of STAP, and then propose the robust space–time 
2-D filter. Performance analysis and relationship to other robust 
methods are given in Section 3, including the relationship to the 
LSMI beamformer and the knowledge-aided STAP. In Section 4, 
simulated data is employed to illustrate the effectiveness of the 
proposed scheme. Finally, conclusions are given in Section 5.

2. Problem formulation

2.1. Space–time signal model

The received data with a signal for STAP is xreceive = αs + c, 
where α denotes the known amplitude of the signal, s = a ⊗ b
denotes the spatial–temporal steering vector, and c denotes clutter 
and noise. In s, a denotes the spatial steering vector, b denotes the 
temporal steering vector, and ⊗ denotes the Kronecker operator. 
Note that the data vector xreceive for a range bin can be rearranged
as the following space–time data matrix X

X =

⎡
⎢⎢⎣

x(1,1) x(1,2) · · · x(1, M)

x(2,1) x(2,2) · · · x(2, M)
...

...
. . .

...

x(N,1) x(N,2) · · · x(N, M)

⎤
⎥⎥⎦ (1)

where N , M denote the number of spatial channel, temporal chan-
nel. In (2), each element x(n, k), n = 1, 2, · · · , N; k = 1, 2, · · · , M
denotes the received data of the nth element and the kth pulse.

The optimum STAP data vector deals with space–time steering 
vector s so that the conventional STAP is essentially a spatial tem-
poral inseparable filter. The optimum STAP is given by [20]

min E
{∥∥wH xreceive

∥∥2}
s.t. wH s = 1 (2)

where E{·} denotes the expectation operator. The N M × 1 weight 
vector w is given by w = R−1s. Here, the N M × N M space–time 
matrix R is the true covariance matrix. In practice, R is unknown 
and should be replaced by the N M × N M space–time sample co-
variance matrix R̂. Therefore, the weight with sample covariance 
matrix is the well known sample matrix inversion (SMI) approach 
for STAP [20].

Due to the fact that space and time error information is dif-
ferent, the space and time vectors can be dealt with separately. 
Therefore, the space–time adaptive weight matrix W can be writ-
ten as follows

W = uvT (3)

where u is the N ×1 spatial weight vector and v is the M ×1 tem-
poral weight vector. The spatial temporal separable filter (STSF), 
i.e., is formulated as [21]

min
u,v

E
{∥∥uH Xv∗∥∥2}

s.t. uH a = 1 and vH b = 1 (4)

Formula (4) has two separate constraints: the spatial steering 
vector constraint uH a = 1, and the temporal steering vector con-
straint vH b = 1. However, the STSF is not the optimal space–time 
2-D filter. It is a dimensional reduced 2-D filter. However, com-
pared with traditional non-separable STAP with insufficient data 
samples, the performance of the STSF is shown better [21].

In addition, the one-dimensional worst case beamforming [10]
can be applied to two-dimensional STAP. That is:

min
w

wH Rw s.t.
∣∣wH s − 1

∣∣2 = ε2wH w (5)

where w is the N M × 1 weight vector, R̂ is the N M × N M space–
time sample covariance matrix, ε is a known constant to bound 
the norm of the spatial steering vector distortion.

2.2. Robust space–time adaptive processing

The traditional robust STAP treats diagonal loading factors in 
space and time 2-D domain. However, we consider repeating the 
robust spatial and temporal processing separately by iterative op-
timization. Under worst case optimization, we get the following 
robust space–time 2-D filter

min
u,v

E
{∥∥uH Xv∗∥∥2}

s.t.
∣∣uH a − 1

∣∣2 = ε2
1uH u

∣∣vH b − 1
∣∣2 = ε2

2vH v (6)

The robust 2-D beamformer is essentially a spatial temporal 
separable filter. The formula above has two separate constraints: 
the robust spatial steering vector constraint |uH a − 1|2 = ε2

1uH u
and the robust temporal steering vector constraint |vH b − 1|2 =
ε2

2vH v. The problem (6) includes N + M independent variables 
(or DoF), which is lower than that of the joint space–time steer-
ing vector constraint |wH s − 1|2 = ε2wH w (N M independent vari-
ables). We formulate a space–time 2-D filter and propose an effec-
tive approach to obtain loading factors in space and time domain.

Since the coupling between spatial and temporal processing ex-
ists, we should repeat the robust spatial and temporal processing 
iteratively until the convergence is achieved. To solve the problem 
in (6), we utilize the Lagrange multiplier method. Thereby, the cost 
function without constraint can be expressed as

L(u,v, λ1, λ2) = E
{∥∥uH Xv∗∥∥2}

+ λ1
(
ε2

1uH u − uH aaH u + uH a + aH u − 1
)

+ λ2
(
ε2

2vH v − vH bbH v + vH b + bH v − 1
)

(7)

where λ1 and λ2 are Lagrange multipliers. We can use the con-
jugate gradient method or Newton method to obtain the optimal 
value. Due to the fact that the coupling exists between space and 
time domain, we use the bi-iterative algorithm [21,22] to calculate 
the robust spatial and temporal weights iteratively. Loading fac-
tors for space and time domain are separated and then adaptive 
weights of space and time domain can be updated by iteration 
processing in the presence of coupling. In this way, we can sepa-
rately perform diagonal loading for spatial and temporal covariance 
matrices.

In the proposed algorithm, we separate spatial/temporal weight 
and the corresponding steering vectors based on the worst-case 
optimization or the RCB method [8], and form the spatial tem-
poral separable filter (6), then we utilize the Lagrange multiplier 
method that is widely used in beamforming to solve the proposed 
algorithm (6). Finally, we use the bi-iterative algorithm to calcu-
late the robust spatial and temporal weights iteratively. The joint 
space–time weight and steering vector can be obtained by the 
Kronecker product of the spatial/temporal weight and the corre-
sponding steering vectors. Unlike conventional robust STAP with 
diagonal loading, we treat the space and time information inde-
pendently and use λ1 and λ2 Lagrange multipliers to control the 
loading factor for space and time domains. The detailed procedures 
can be summarized as follows:

Step 1: At k = 0, initialize v(0) = b
bH b

, and calculate the differ-
entiation of L(u, v, λ1, λ2) with respect to u to zero. After some 
simple calculations, we can get the adaptive spatial weight vec-
tor u(k) = λ1(k)

λ1(k)aH (
�
Rs(k)+λ1(k)ε2

1 I)−1a−1
(
�

Rs(k) + λ1(k)ε2
1I)−1a, where 

the spatial covariance matrix is 
�

Rs(k) = 1
P

∑P
i=1 Xiv(k − 1)vH (k −

1)XH
i , P is number of data samples, and the loading factor λ1(k)



Download	English	Version:

https://daneshyari.com/en/article/564609

Download	Persian	Version:

https://daneshyari.com/article/564609

Daneshyari.com

https://daneshyari.com/en/article/564609
https://daneshyari.com/article/564609
https://daneshyari.com/

