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Several techniques have been proposed in the literature to accelerate the convergence of adaptive 
algorithms for the identification of sparse impulse responses (i.e., with energy concentrated in a few 
coefficients). Among these techniques, the improved μ-law proportionate normalized least mean squares 
(IMPNLMS) algorithm is one of the most effective. This paper presents an accurate transient analysis of 
this algorithm and derives an estimate of its steady-state MSE, without requiring the assumption of white
Gaussian input signals.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

This paper focuses on the class of supervised adaptive algo-
rithms that seek the identification of sparse impulse responses, 
common in various acoustic, chemical and seismic processes, as 
well as in wireless communications channels [1,2]. Here, a se-
quence is considered sparse if most of its elements are close to 
zero, which implies a concept of sparsity weaker than that usually 
employed in numerical analysis [3].

There is no mathematical difficulty in applying supervised al-
gorithms to identify such responses, but some practical problems 
may arise, the main one being a slow convergence. In this pa-
per we investigate the convergence behavior of algorithms of the 
PNLMS family (which follow the paradigm proposed by [4] to ac-
celerate the convergence of the identification method), analyzing 
the performance evolution of one of its most successful algo-
rithms (the so-called IMPNLMS [5]) and obtaining an estimate of 
its mean-square error in steady state.

If the adaptive filter has length L, we can define the input vec-
tor xk in terms of the input signal x(k) as

xk = [x(k) x(k − 1) · · · x(k − L + 1)
]T

. (1)

Although the input signal can be colored, the vast majority of 
the transient analysis of PNLMS-type algorithms found in the liter-
ature assume that it is white [4,6–8]. Violation of this assumption 
results in substantial differences in the convergence of the algo-
rithms.
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In the k-th iteration, the adaptive weight vector ̂hk is expressed 
as1

ĥk = [̂hk(0) ĥk(1) · · · ĥk(L − 1)
]
, (2)

and the optimal response to be provided by the adaptive algo-
rithm is d(k) = hxk . In this work, we assume that the length of 
the filter impulse response h to be identified is equal to or less 
than L and that the uncertainty on the desired response measure-
ment can be modeled by an additive white Gaussian noise ν(k), 
which is independent of the input signal and has variance σ 2

ν . The 
unpredictability of this noise prevents its removal, and hence the 
adaptive system has only access to d̂(k) = d(k) + ν(k). The adap-
tive algorithm should change the parameters to minimize a cost 
function dependent on the measured error defined as

e(k) = d̂(k) − y(k) = [h − ĥk
]
xk + ν(k), (3)

where y(k) = ĥkx(k) is the adaptive filter output signal at in-
stant k. Fig. 1 illustrates the structure of a typical supervised adap-
tive identification algorithm.

The process of minimizing the cost function determines the 
characteristics of the adaptive learning system. Among the vari-
ous cost functions found in the literature, the most popular is the 
squared error e2(k) [9–11], which can be interpreted as an instan-
taneous estimate of the mean square error (MSE). The correspond-
ing adaptation algorithm, known as Least-Mean-Square (LMS)
algorithm, employs the steepest descent optimization method. Its 
normalized version (the NLMS algorithm), accelerates the con-
vergence rate by varying the learning factor along the iterations, 

1 The weight vectors are defined as row vectors, while all other vectors are col-
umn vectors.
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Fig. 1. Structure of a supervised adaptive identification algorithm.

avoiding, through the normalization, that eventually vectors xk
with high modulus amplify the noise in the adaptive process. The 
update equation of the NLMS algorithm is

ĥk+1 = ĥk + β
xke(k)

δ + xT
k xk

, (4)

where δ is a constant slightly larger than zero to avoid divisions 
by zero and β is the step-size or learning factor.

Recently several adaptive algorithms have been proposed specif-
ically for sparse response identification systems. Such algorithms 
aim at overcoming the slow convergence of the NLMS in sparse 
configurations [1,12] through an uneven distribution of updating 
energy over the coefficients of ĥk , with larger learning factors as-
signed to the coefficients of greater magnitude. This strategy can 
be interpreted as a cooperation established by a central resource 
administrator, which gives more prominent updates for the coeffi-
cients of greater magnitude.

In this context, the PNLMS algorithm increases the factor β cor-
responding to ̂hk(n) proportionally to its magnitude. The elements 
of ̂hk that are farther away from zero will have larger updates than 
those of smaller magnitude. The algorithm also performs a regular-
ization for small amplitude signals [4].

2. Adaptive algorithms for the identification of sparse responses

In this section we briefly present some of the main contribu-
tions in adaptive identification of sparse impulse responses.

It is very common to use the NLMS for the adaptation of high-
order adaptive filters, such as in echo cancellation [4]. One of the 
first proposed alternatives consisted of using filters with fewer 
adaptive coefficients than the length of the impulse response, by 
only updating the subsets of coefficients that corresponded to the 
dispersive regions [13,14]. One of the great advantages of this 
strategy lies in the substantial reduction in computational cost.

Another possibility of accelerating the adaptation convergence 
in the context of sparse impulse responses, when the NLMS has 
a sub-optimal performance, is the distribution of the learning fac-
tor β through the coefficients, as explained above. The first such 
proposal was the PNLMS (Proportionate Normalized Least-Mean-
Squares) algorithm, derived for echo cancellation [4]. All the algo-
rithms studied in this paper are derived from the PNLMS, and for 
that reason we say that they belong to the family of the PNLMS 
algorithms.

For sparse systems, the PNLMS algorithm presents faster ini-
tial convergence than does the NLMS. However, the convergence 
rate is dramatically reduced after the initial period and is slower 
than that of the NLMS for non-sparse impulse responses [5]. For 
this reason, the PNLMS++ algorithm [15] adopts switching between 
PNLMS and NLMS algorithms in order to reduce this degradation 
in non-sparse configurations. In [16], an approximation of the op-
timal step-size control factors is proposed in order to circumvent 
this drawback of the PNLMS algorithm. Instead of adjusting the 
adaptation step-size proportionally to the magnitude of the esti-
mated filter coefficient, the resulting algorithm employs the loga-

Table 1
IMPNLMS algorithm.

Initialization (typical values)
δ = 0.01, ε = 0.001, β = 0.25, λ = 0.1
ξ(−1) = 0.96
ĥ0 = [ ĥ0(0) ĥ0(1) · · · ĥ0(L − 1) ] = 0
Processing and adaptation
For k = 0,1,2, · · ·

xk = [ x(k) x(k − 1) · · · x(k − L + 1) ]T

y(k) = ĥkxk

e(k) = d̂(k) − y(k)

ξĥk
= L

L−√
L

(
1 −

∑L−1
j=0 |̂hk( j)|√

L
∑L−1

j=0 ĥ2
k ( j)

)
ξ(k) = (1 − λ)ξ(k − 1) + λξĥk

α(k) = 2ξ(k) − 1
For i = 0,1, · · · , L − 1

gk(i) = 1−α(k)
2L + (1+α(k))F (|̂hk (i)|)

2
∑L−1

j=0 F (|̂hk( j)|)+ε

End For
�k = diag{gk(0), · · · , gk(L − 1)}
ĥk+1 = ĥk + β

xT
k �ke(k)

xT
k �k xk+δ

End For

rithm of these magnitudes. In order to reduce the computational 
cost, the logarithmic function is approximated by a piecewise lin-
ear function, leading to the μ-law proportionate NLMS (MPNLMS) 
algorithm.

The above approaches have the disadvantage of requiring 
sparseness of the impulse response to be identified for fast con-
vergence, which is not always the case. In [5] such problem is 
mitigated by employing a measure of the sparseness of the system 
impulse response, resulting in the improved MPNLMS (IMPNLMS) 
algorithm shown in Table 1. The function ξĥk

estimates the degree 
of sparseness based on the available estimated impulse response at 
each iteration. Such function assumes values in the interval [0, 1], 
approaching 1 when the impulse response is sparse and 0 when 
it is dispersive. The conversion of ξĥ to the domain of the param-
eter α(k) was arbitrated by simulations [5]. The piecewise linear 
function

F
(∣∣̂hk(n)

∣∣)= {400|̂hk(n)|, |̂hk(n)| < 0.005

8.51|̂hk(n)| + 1.96, otherwise
, (5)

which approximates the logarithmic function [16], is adopted in 
the update of the step-size control factors gk(i).

Among others, alternative strategies (not explored in this pa-
per) for the identification of sparse responses consist of using an 
approximation of l0-norm or l1-norm of the weight vector to ob-
tain a more accurate sparseness measure [17–20] and the use of 
Krylov subspace [6].

3. Transient analysis of the IMPNLMS algorithm

The theoretical estimation of the mean square error conver-
gence of an adaptive algorithm eliminates the need of Monte Carlo 
averaging, among other advantages already well acknowledged in 
the literature. In this section, we derive recursive equations that 
describe in a reasonably accurate form the evolution of the MSE 
along the iterations.

In all analyses of PNLMS-type algorithms found in the literature, 
it is assumed that the input signal is white [7,8,21]. The violation 
of this hypothesis makes the algorithm convergence much slower, 
which disagrees with the analytical results. Therefore, in the ben-
efit of generality, our analysis imposes no constraint on the input 
signal. We focus on the analysis of the IMPNLMS.

The equations of interest here are (see Table 1):

ξĥk
= L

L − √
L

(
1 −

∑L−1
j=0 |̂hk( j)|√

L
∑L−1

j=0 ĥ2
k( j)

)
, (6)
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