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An automatic gain tuning algorithm is proposed for a recently introduced adaptive notch filter. Theoretical 
analysis and simulations show that, under Gaussian random-walk type assumptions, the proposed 
extension is capable of adjusting adaptation gains of the filter so as to minimize the mean-squared 
frequency tracking error without prior knowledge of the true frequency trajectory. A simplified one 
degree of freedom version of the filter, recommended for practical applications, is proposed as well.
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1. Introduction

Adaptive notch filters (ANFs) are devices capable of suppressing 
or enhancing nonstationary narrowband signals buried in noise. 
The vector of state variables of ANFs often includes, or allows one 
to determine, instantaneous frequency of the tracked narrowband 
signal. Such filters, e.g. [1–4], can be used to estimate time-varying 
frequency of the signal of interest.

A typical ANF employs one or more user-dependent adaptation 
gains which must be judiciously tuned to optimize the filters’ per-
formance. Since tuning of the filter is a time-consuming process, 
it is desirable to provide some means of automatic adjustment of 
these gains, e.g. in a form of a supervisory self-optimization layer. 
Such a combination could equip an ANF with a capability to deliver 
nearly-optimal performance, despite possible variations of tracking 
conditions, e.g. the signal to noise ratio or a rate at which the fre-
quency changes.

Adaptation gains are most often adjusted with an aim of op-
timizing signal tracking performance. Popularity of this approach 
results primarily from two facts. Firstly, the underlying application 
of an ANF may require tight signal tracking. Such is the case of, 
among others, filtering power signal from electrocardiogram (ECG) 
recordings [5], tracking harmonic currents in power applications 
[6–8] or active control of narrowband acoustic noise [9]. Secondly, 
in case of signal tracking it is rather simple to distinguish the 
poorly performing ANF from the one which performs well. This 
can be done, without any prior knowledge of the true values of 
the narrowband signal, by evaluating prediction errors yielded by 
the filter [10]. Due to this relative simplicity of measuring the fil-
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ter’s performance, several self-tuning ANF solutions were proposed 
in signal processing literature, see e.g. [10,11].

The problem of optimizing frequency tracking performance of 
an ANF has received substantially less attention – existing re-
sults are generally limited to evaluations of theoretically achiev-
able mean-square errors and experimental comparisons of various 
notch filtering approaches [12–16]. This stems from the fact it is 
actually quite difficult to tell how well the filter tracks the sig-
nal’s frequency without a prior knowledge of its true trajectory – 
it occurs that settings which minimize signal tracking errors are 
usually different from those which minimize frequency tracking er-
rors [17]. For this reason, existing solutions often underperform in 
terms of frequency tracking when they are run in a real-world sce-
nario.

The problems outlined above are encountered in other ap-
proaches to frequency estimation as well. For instance, estimators 
such as the short time Fourier transform (STFT) or ESPRIT [18] re-
quire one to choose local analysis window length, which should 
be adjusted to the signal’s characteristics. Similarly, trackers based 
on the extended Kalman filter (EKF) are known to be highly ac-
curate [19–21,11], but difficult to tune – even though some very 
good rules were pointed in [19].

Recently, new results on ANF application to frequency track-
ing were established in [22]. It was shown that one can quantify 
frequency tracking accuracy of an ANF with a special auxiliary pre-
dictor. A parallel adaptive frequency tracker was also proposed in 
[22]. It employs a bank of notch filters and uses the proposed pre-
dictor to select the filter which offers the most accurate tracking. 
The new scheme outperformed several existing algorithms, includ-
ing a recent self-tuning one.

However, the parallel scheme introduced in [22] is not free 
of drawbacks. First, it has rather high computational complexity, 
because it involves a bank of notch filters. Second, its accuracy 
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grossly depends on how representative the setting of the filters 
composing the bank are. If there is no filter ‘matched’ to tracking 
conditions, the parallel scheme will yield degraded performance. 
This means that the filterbank must be quite large, which further 
increases computational complexity.

The contribution of the paper is threefold. First, a novel au-
tomatic gain adjustment mechanism is proposed for a recently 
introduced adaptive notch filter. Second, theoretical analysis of the 
algorithm’s behavior is performed. It is shown that, under Gaussian 
assumptions, the resulting estimator is locally convergent in mean 
to the optimal tracker, even in the case of unknown and time-
varying signal characteristics. This is, most likely, the first solution 
with such a capability – as it will be argued later, the parallel 
tracker from [22] cannot provide performance guarantees similar 
to those of the sequential approach. Third, the analysis reveals that 
the preliminary version of the self-adjustment mechanism suffers 
from slow convergence. Therefore, a normalized variant of the al-
gorithm is proposed, which is free of this drawback. A simplified, 
one degree of freedom scheme is proposed as well. Finally, rich 
simulation material confirms good properties of the improved so-
lutions and validates results of convergence analysis.

The remaining part of paper is organized as follows. Section 2
formulates the problem and reviews fundamental findings from 
[22]. Section 3 develops the proposed approach. Convergence of 
the proposed solution is analyzed in Section 4. Section 5 discusses 
extensions and compares the sequential approach with the parallel 
one. Section 6 presents simulation results. Section 7 concludes.

2. Problem formulation and related results

Consider the problem of estimating an unknown slowly time-
varying frequency ω(t) of a narrowband complex sinusoid (cisoid) 
using noisy measurements

y(t) = s(t) + v(t), (1)

where t = 0, 1, . . . denotes discrete time, v(t) is a wideband mea-
surement noise,

s(t) = a(t)e j
∑t

τ=1 ω(τ) (2)

is a nonstationary complex sinusoid with instantaneous frequency 
ω(t) and

a(t) = m(t)e jφ0 , (3)

where m(t) is a real valued slowly time varying amplitude and φ0
denotes the initial phase.

Tracking of ω(t) may be accomplished e.g. using the following 
ANF algorithm, introduced in [17]2

f̂ (t) = e j[ω̂(t−1)+α̂(t−1)] f̂ (t − 1)

ε(t) = y(t) − â(t − 1) f̂ (t)

â(t) = â(t − 1) + θ3 f̂ ∗(t)ε(t)

α̂(t) = α̂(t − 1) + θ1δ(t)

ω̂(t) = ω̂(t − 1) + α̂(t − 1) + θ2δ(t)

δ(t) = Im

[
ε(t)

â(t − 1) f̂ (t)

]

ŝ(t) = â(t) f̂ (t), (4)

where f̂ (t) is a phase term, ε(t) is the prediction error, ∗ denotes 
complex conjugation, the quantities â(t), ŝ(t), ω̂(t) and α̂(t) are 

2 The original formulation used the symbols γα , γω , μ, rather than θ1, θ2, and θ3.

the estimates of the signal’s complex ‘amplitude’, instantaneous 
value, instantaneous frequency and instantaneous frequency rate 
[α(t − 1) = ω(t) − ω(t − 1)], respectively. Adaptation laws of (4)
take a form typical to adaptive signal processing [23] and fre-
quency estimation [2,19,20]: new values of variables are obtained 
by adding an update term, proportional to quantities which may be 
interpreted as errors (ε(t) and δ(t)). The parameters θ1 > 0, θ2 > 0, 
θ3 > 0, θ1 � θ2 � θ3, are small adaptation gains, determining the 
rates of amplitude adaptation, frequency adaptation and frequency 
rate adaptation, respectively.

Tracking of frequency rate is quite uncommon among adaptive 
notch filters and deserves more justification. Many real world nar-
rowband signals exhibit approximately piecewise linear frequency 
modulation. Such is the case, among others, of radar signals, acous-
tic engine noise encountered in active noise control systems or 
vibration generated by rotating machinery during transient states. 
In these cases estimation of both frequency and frequency rate 
can improve tracking accuracy considerably – even by an order of 
magnitude, see e.g. [17]. Finally, observe that setting α̂(0) = 0 and 
θ1 = 0 effectively disables the frequency rate tracking feature.

As shown in [17], the algorithm (4) has very good statistical 
properties. Under the following assumptions:

(A1) Instantaneous frequency drifts according to the 2-nd order 
random walk (also called integrated random walk)

ω(t) = ω(t − 1) + α(t − 1)

α(t) = α(t − 1) + w(t), (5)

where {w(t)} forms a stationary zero-mean Gaussian white 
noise sequence, w ∼N (0, σ 2

w),
(A2) The sequence {v(t)}, independent of {w(t)}, is a circular com-

plex Gaussian white noise, v ∼ CN (0, σ 2
v ),

(A3) The magnitude of the narrowband signal is constant,
|s(t)| ≡ a0,

a proper choice of the gains θ1, θ2, θ3 can turn the algorithm (4)
into a statistically efficient frequency tracker. In such case steady 
state mean squared frequency tracking errors, �ω̂(t) = ω(t) −
ω̂(t), will reach the fundamental lower bound (called posterior 
or Bayesian Cramér–Rao bound [24]) which limits mean-squared 
tracking performance of any estimation scheme. Although closed-
form expressions for the optimal values of gains θ1, θ2, θ3 do not 
exist, it can be shown that they depend only on the following ‘nor-
malized’ measure of signal nonstationarity [17]

κ = a2
0σ

2
w

σ 2
v

. (6)

Note that, from a practical point of view, statistical efficiency of 
(4) is of somewhat questionable value – the values of the parame-
ters σ 2

v , σ 2
w and a2

0 are unlikely to be known, which makes tuning 
(4) a challenging task.

In [22] a novel way of evaluating frequency tracking perfor-
mance of ANFs was proposed. It was shown that the settings which 
minimized the mean-squared frequency tracking error also mini-
mized the mean-squared value of the following auxiliary sequence

ξ(t) = 1 − 2q−1 + q−2

θ2 + (θ1 − θ2)q−1
ω̂(t), (7)

where q−1 denotes the backward shift operator, q−1u(t) = u(t −1). 
Note that ξ(t) may be obtained without any prior knowledge of 
the true values of ω(t). This makes (7) particularly useful for on-
line optimization.



Download English Version:

https://daneshyari.com/en/article/564655

Download Persian Version:

https://daneshyari.com/article/564655

Daneshyari.com

https://daneshyari.com/en/article/564655
https://daneshyari.com/article/564655
https://daneshyari.com

