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The OSCAR (octagonal selection and clustering algorithm for regression) regularizer consists of an �1 norm
plus a pairwise �∞ norm (responsible for its grouping behavior) and was proposed to encourage group
sparsity in scenarios where the groups are a priori unknown. The OSCAR regularizer has a non-trivial
proximity operator, which limits its applicability. We reformulate this regularizer as a weighted sorted
�1 norm, and propose its grouping proximity operator (GPO) and approximate proximity operator (APO),
thus making state-of-the-art proximal splitting algorithms (PSAs) available to solve inverse problems
with OSCAR regularization. The GPO is in fact the APO followed by additional grouping and averaging
operations, which are costly in time and storage, explaining the reason why algorithms with APO are
much faster than those with GPO. The convergences of PSAs with GPO are guaranteed since GPO is
an exact proximity operator. Although convergence of PSAs with APO is may not be guaranteed, we
have experimentally found that APO behaves similarly to GPO when the regularization parameter of the
pairwise �∞ norm is set to an appropriately small value. Experiments on synthetic data and real-world
data show the robustness and efficiency of APO, respectively, and experiments on recovery of group-
sparse signals (with unknown groups) show that PSAs with APO are very fast and accurate.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the past few decades, linear inverse problems have attracted
a lot of attention in a wide range of areas, such as statistics,
machine learning, signal processing, and compressive sensing, to
name a few. The typical forward model is

y = Ax + n, (1)

where y ∈R
m is the measurement vector, x ∈R

n the original signal
to be recovered, A ∈ R

m×n is a known sensing matrix, and n ∈ R
m

is noise (usually assumed to be white and Gaussian). In most cases
of interest, A is not invertible (e.g., because m < n), making (1) an
ill-posed problem (even in the absence of noise), which can only
be addressed by using some form of regularization or prior knowl-
edge about the unknown x. Classical regularization formulations
seek solutions of problems of the form
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min
x

f (x) + λr(x) (2)

or one of the equivalent (under mild conditions) forms

min
x

r(x) s.t. f (x) ≤ ε or min
x

f (x) s.t. r(x) ≤ ε, (3)

where, typically, f (x) = 1
2 ‖y−Ax‖2

2 is the data-fidelity term (under
a white Gaussian noise assumption), r(x) is the regularizer that en-
forces certain properties (such as sparsity) on the target solution,
and λ, ε, and ε are non-negative parameters.

1.1. Group-sparsity-inducing regularizers

In recent years, much attention has been paid not only to the
sparsity of solutions but also to the structure of this sparsity,
which may be relevant in some problems and which provides an-
other avenue for inserting prior knowledge into the problem. In
particular, considerable interest has been attracted by group spar-
sity [49], block sparsity [18], or more general structured sparsity
[3,24,29]. A classic model for group sparsity is the group LASSO
(gLASSO) [49], where the regularizer is the so-called �1,2 norm [37,
27] or the �1,∞ norm [37,28], defined as rgLASSO(x) = ∑s

i=1 ‖xgi ‖2
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and
∑s

i=1 ‖xgi ‖∞ , respectively,1 where xgi represents the subvec-
tor of x indexed by gi , and gi ⊆ {1, ...,n} denotes the index set of
the i-th group. Different ways to define the groups lead to overlap-
ping or non-overlapping gLASSO. Notice that if each group above
is a singleton, then rgLASSO reduces to rLASSO, whereas if s = 1 and
g1 = {1, ...,n}, then rgLASSO(x) = ‖x‖2. Recently, the sparse gLASSO
(sgLASSO) regularizer was proposed as rsgLASSO(x) = λ1rLASSO(x) +
λ2rgLASSO(x), where λ1 and λ2 are non-negative parameters [41]. In
comparison with gLASSO, sgLASSO not only selects groups, but also
individual variables within each group. Note that one of the costs
of the possible advantages of gLASSO and sgLASSO over standard
LASSO is the need to define a priori the structure of the groups.

In some problems, the components of x are known to be sim-
ilar in value to its neighbors (assuming that there is some natural
neighborhood relation defined among the components of x). To en-
courage this type of solution (usually in conjunction with sparsity),
several proposals have appeared, such as the elastic net [53], the
fused LASSO (fLASSO) [43], grouping pursuit (GS) [40], and the oc-
tagonal shrinkage and clustering algorithm for regression (OSCAR) [7].
The elastic net regularizer is relast-net(x) = λ1‖x‖1 + λ2‖x‖2

2, en-
couraging both sparsity and grouping [53]. The fLASSO regularizer
is given by rfLASSO(x) = λ1‖x‖1 + λ2

∑
i |xi − xi+1|, where the total

variation (TV) term (sum of the absolute values of differences) en-
courages consecutive variables to be similar; fLASSO is thus able to
promote both sparsity and smoothness. The GS regularizer is de-
fined as rGS(x) = ∑

i< j G(xi − x j), where G(z) = |z|, if |z| ≤ λ, and
G(z) = λ, if |z| > λ [40]; however, rGS is neither sparsity-promoting
nor convex.

Finally, rOSCAR [7] has the form rOSCAR(x) = λ1‖x‖1 +
λ2

∑
i< j max{|xi |, |x j |}; due to the �1 term and the pairwise �∞

penalty, the components are encouraged to be sparse and pairwise
similar in magnitude. The OSCAR has been extensively applied in
various feature grouping tasks [7,36,47,51]. Notice that OSCAR does
not promotes group-sparsity in the same sense as other methods;
what it does is promote standard sparsity (via the presence of an
�1 term) and a grouping behavior, that is, components of sim-
ilar magnitude (regardless of their position in the vector/signal)
are encouraged to take the same value. This grouping encourage-
ment makes OSCAR close to standard group-sparsity regularizers,
but with a key difference: the found groups depend exclusively on
the magnitudes, not on the position of the involved signal compo-
nents.

Other recently proposed group-sparsity regularizers include the
adaptive LASSO (aLASSO) [52], where the regularizer is raLASSO(x) =
λ

∑
i |xi |/|x̃i |γ , where x̃ is an initial consistent estimate of x, and

λ and γ are positive parameters. The pairwise fLASSO (pfLASSO
[35]) is a variant of fLASSO, given by rpfLASSO(x) = λ1‖x‖1 +
λ2

∑
i< j |xi − x j |, is related to OSCAR, and extends fLASSO to cases

where the variables have no natural ordering. Another variant
is the weighted fLASSO (wfLASSO [14]), given by rwfLASSO(x) =
λ1‖x‖1 + λ2

∑
i< j wij(xi − sign(ρi j)x j)

2, where ρi j is the sample
correlation between the i-th and j-th predictors, and wij is a non-
negative weight. Finally, the recent graph-guided fLASSO (ggfLASSO
[25]) regularizer is based on a graph G = (V,E), where V is the
set of variable nodes and E ⊆ V2 the set of edges: rggfLASSO(x) =
λ1‖x‖1 + λ2

∑
(i, j)∈E,i< j wij|xi − sign(ri j)x j |, where ri j represents

the weight of the edge (i, j) ∈ E; if ri j = 1, rggfLASSO reduces to
rfLASSO, and the former can group variables with different signs
through the assignment of ri j , while the latter cannot. Some other
graph-guided group-sparsity-inducing regularizers have been pro-
posed in [47], and all this kind of regularizers needs a strong
requirement – the prior information on an undirected graph.

1 Recall that ‖x‖∞ = max{|x1|, |x2|, ..., |xn|}.

Fig. 1. Illustration of rfLASSO, relast-net , rLASSO, rOSCAR and rridge which is the regular-
izer of ridge regression.

For the sake of comparison, several of the above mentioned reg-
ularizers are illustrated in Fig. 1, where the corresponding level
curves (balls) are depicted; we also plot the level curve of the
classical ridge regularizer rridge = ‖x‖2

2. We can see that rOSCAR(x),
relast-net(x), and rfLASSO(x) promote both sparsity and grouping, but
their grouping behaviors are clearly different: 1) OSCAR encourages
equality (in magnitude) of each pair of variables, as will be dis-
cussed in detail in Section 2; 2) elastic net is strictly convex, but
doesn’t promote strict equality like OSCAR; 3) the total variation
term in fLASSO can be seen to encourage sparsity in the differ-
ences between each pair of successive variables, thus its recipe of
grouping is to guide variables into the shadowed region shown in
Fig. 1, which corresponds to

∑
i |xi −x j | ≤ ς (where ς is a function

of λ2).
As seen above, fLASSO, the elastic net, and OSCAR have the

potential to be used as regularizers when it is known that the
components of the unknown signal exhibit structured sparsity, but
a group structure is not a priori known. However, as pointed out in
[51], OSCAR outperforms the other two models in feature grouping.
Moreover, fLASSO is not suitable for grouping according to magni-
tude, since it cannot group positive and negative variables together,
even if their magnitudes are similar; fLASSO also relies on a par-
ticular ordering of the variables, for which there may not always
be a natural choice. Consequently, we will focus on the OSCAR reg-
ularizer in this paper.

In [7], a costly quadratic programming approach was adopted
to solve the optimization problem corresponding to OSCAR. More
recently, [36] solved OSCAR in a generalized linear model con-
text; the algorithm therein proposed solves a complicated con-
strained maximum likelihood problem in each iteration, which is
also costly. An efficient algorithm was proposed in [51], by refor-
mulating OSCAR as a quadratic problem and then applying FISTA
(fast iterative shrinkage-thresholding algorithm) [5]. To the best of
our knowledge, this is the currently fastest algorithm for OSCAR.
In this paper, we propose reformulating rOSCAR as a weighted and
sorted �1 norm, and present an exact grouping proximity operator
(termed GPO) of rOSCAR that is based on a projection step proposed
in [51] and an element-wise approximate proximal step (termed
APO). We show that GPO consists of APO and an additional group-
ing and averaging operation. Furthermore, we use alternative state-
of-the-art proximal splitting algorithms (PSAs, briefly reviewed next)
to solve the problems involved by the OSCAR regularization.

1.2. Proximal splitting and augmented Lagrangian algorithms

In the past decade, several special purpose algorithms have
been proposed to solve optimization problems of the form (2)
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