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In this paper, we propose two novel source localization methods; one is the shrinkage estimator with the
minimum mean squared error criterion, and the other is the shrinkage estimator with the minimum bias
criterion. The mean squared error performance of the two-step weighted least squares deteriorates in the
large noise variance regimes. In order to improve the two-step weighted least squares in the large noise
variance regimes, the shrinkage factor is multiplied by the two-step weighted least squares estimator,
and then the novel estimator is determined such that the mean squared error and squared bias are
minimized. Simulation results show that the mean squared error performances of the proposed methods
are better than those of the two-step weighted least squares method as well as the minimax estimator
in a regime with large measurement noise variances.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Source localization is a technique that finds a geometrical point
of intersection using the measurements from each receiver, such
as the time difference of arrival, the time of arrival (TOA), or the
received signal strength. Localizing point sources, using passive and
stationary sensors, is of considerable interest, and this has been a
repeated theme of research in the radar, sonar, global positioning
system, video conferencing, and telecommunication areas.

Several methods exist for multi-sensor localization. Torrieri [1]
derived a principal algorithm to analyze the hyperbolic location
systems and direction-finding location systems and used distance
and angle information for the maximum likelihood (ML). In [2],
the source position was estimated using the adaptive filter the-
ory presented therein. Performance analysis of source localization
methods are included in the research results of [3] and [4]. The
accuracies of least squares (LS) and squared-range LS (SRLS) were
compared in [3]. The researchers in [4] discussed whether the
three source localization methods are minimum variance unbiased
estimator (MVUE) and robust. The minimax estimator, where the
shrinkage factor was adopted, that dominates the LS estimator was
developed in [5]. A closed-form solution satisfying the Cramér–Rao
lower bound (CRLB) in a sufficiently small noise variance regime
was developed in [6,7]. This method considered the relationship
between the source position variable and the auxiliary range vari-
able in order to calculate the location estimate in the second step.

* Corresponding author.

In [8], various shrinkage estimators were introduced. The shrinkage
estimator is a type of biased estimator, e.g., the James–Stein esti-
mator [9] and ridge regression [10], and is known for exhibiting
strong optimality [11]. The minimum mean squared error (MSE)
criterion has been widely used for optimal MSE performance of an
estimator [11]. The minimum bias criterion has also been used in
statistical estimation fields [12–15]. In the proposed methods, the
shrinkage factor is multiplied by the existing two-step weighted
least squares (WLS) method, and this constant is determined such
that the MSE and the bias are minimized. These methods are dif-
ferent from the minimax estimator [5, Eqs. (44), (45)], because
the shrinkage factors in these methods are different from that in
the minimax estimator. The closed-form solution has advantages in
terms of the number of measurements required in the determina-
tion of the position estimate and computational complexity, when
compared with an iteration method, such as the Taylor-series ML,
particle filter, or gradient-based methods. The closed-form location
estimation solution, which approximates the CRLB under a suffi-
ciently small measurement noise condition, was developed in [6,
7]. In situations where variance of the measurement noise is suffi-
ciently small, the second-order noise terms can be neglected.

However, the performances of the existing methods [6,7] de-
grade when the variance of the measurement noise is large, be-
cause the second-order noise components cannot be neglected.
These second-order noise terms render the mean of the noise com-
ponents [defined as E[w], E[v] in Eqs. (15), (22)] to be nonzero
under large noise conditions, and the conventional minimax esti-
mator can be improved by correcting the shrinkage factor using
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this phenomenon. In the two-step WLS method, the second-order
noise terms increase the bias under large noise conditions and
thereby increase the MSE. This paper proposes methods that use
the shrinkage estimator with the minimum MSE and minimum
bias, respectively. The proposed methods outperform the two-step
WLS method [6,7] as well as the minimax estimator for large noise
conditions.

The organization of this paper is as follows. Section 2 deals
with the details of the existing two-step WLS source localization
algorithm and discusses the proposed methods. Section 3 per-
forms the MSE analysis of the proposed method. Section 4 analyzes
the experiment results to evaluate the estimation performance of
the proposed methods, comparing it with existing algorithms. Sec-
tion 5 presents conclusions and directions for future work.

2. Problem formulation

The TOA source localization method finds the position of a
source by using multiple circles whose centers represent the po-
sitions of sensors.

The measurement equation is represented as

rk,i = ro
i + nk,i =

√
(x − xi)

2 + (y − yi)
2 + nk,i,

i = 1,2, . . . , M, k = 1,2, . . . , N (1)

where rk,i and ro
i are the measured and true distances, respectively,

between the source and the ith sensor at the kth sampling, nk,i is
the measurement noise, modeled as a Gaussian distribution and
represented as N(0, σ 2

i ), [x, y]T is the true source position, and
[xi, yi]T is the position of the ith sensor.

Throughout this letter, a lowercase boldface letter denotes a
vector, an uppercase boldface letter indicates a matrix, and the su-
perscript T signifies the vector/matrix transpose.

Ignoring the measurement noise and squaring (1) yields the fol-
lowing equations.

xi x + yi y − 0.5R = 0.5
(
x2

i + y2
i − r2

k,i

)
,

i = 1,2, . . . , M, k = 1,2, . . . , N (2)

which is represented in a matrix form as

Ax = bk, (3)

where

A =
⎡
⎣ x1 y1 −0.5

...
...

...

xM yM −0.5

⎤
⎦ , bk = 1

2

⎡
⎢⎣

x2
1 + y2

1 − r2
k,1

...

x2
M + y2

M − r2
k,M

⎤
⎥⎦ ,

x = [x y R]T ,

xi , yi is the position of the ith sensor, rk,i is the measured distance
between the source and the ith sensor at the kth sampling, and R
is the range variable defined as x2 + y2.

In this paper, the multiple measurements scenario (N � 2) is
assumed, and the optimal estimator is just a sample mean for this
case.

This can be shown as follows. The measurements bk (k =
1, . . . , N) in (3) have an approximate Gaussian distribution as
shown in (4).

bk,i = 0.5
(
x2

i + y2
i − r2

k,i

)
= 0.5

{
x2

i + y2
i − (

ro
i + nk,i

)2}
= 0.5

{
x2

i + y2
i − (

ro
i

)2 − 2ro
i nk,i − n2

k,i

}
, (4)

bk = [bk,1, . . . ,bk,M ]T

where ro
i is the true distance between the source and the ith sen-

sor.
The second-order noise terms can be neglected in a suffi-

ciently small noise condition in (4). Hence, bk,i (k = 1, . . . , N, i =
1, . . . , M) is an approximately Gaussian distribution.

The covariance matrix of bk is obtained as follows:
The noise components of bk are represented from (4) as follows

when the second-order noise term is ignored:

�bk,i = −ro
i nk,i (5)

The following property is obtained from (5) because nk,i , nk, j
(i �= j) are uncorrelated.

E[�bk,i · �bk, j] =
{

0, if i �= j
(ro

i )
2σ 2

i , if i = j (6)

E[�bk,i] = 0, E[�bk, j] = 0 for all k, i, and j (7)

Thus, the covariance matrix of bk is obtained as follows:

[Cb]i, j = E[�bk,i · �bk, j] − E[�bk,i] · E[�bk, j]
=

{
(ro

i )
2σ 2

i , if i = j
0, if i �= j

∼=
{

rs
i σ

2
i , if i = j

0, if i �= j

where rs
i = (1/N)

N∑
k=1

r2
k,i,

[Cb]i, j denotes the component corresponding

to the ith row and jth column of Cb. (8)

In the derivation of Cb , (ro
i )

2 is substituted as rs
i because it is un-

known.
When assuming rk,i and rm,i (k �= m) obtained from different

time are independent, bk,i , bm,i (k �= m) are also independent.
Then, the joint probability distribution of b1:N can be represented
as follows:

p(b1:N ;x) = (2π)−MN/2|Cb|−N/2

× exp

{
−0.5

N∑
k=1

(bk − Ax)T C−1
b (bk − Ax)

}
(9)

Eq. (9) is the exponential family form, and the sufficient statis-
tic of the exponential family is a complete sufficient statistic [16].
Hence, the sufficient statistic of (9) (i.e., AT C−1

b

∑N
k=1 bk) is the

complete sufficient statistic. The first-step location estimate is ob-
tained as (10) because the unbiased function of the complete suf-
ficient statistic is the MVUE [16]. However, (10) is not an exact
MVUE in the large noise variance condition, due to the second-
order noise terms. Thus, it should be further improved.

x̂ = (
AT C−1

b A
)−1

AT C−1
b

{
(1/N)

N∑
k=1

bk

}
(10)

The relationship between the position and range variable is addi-
tionally used in the second-step to obtain a more accurate esti-
mate.

The second-step position estimate is determined as follows [2]:
When x̂ of (10) is sufficiently close to x, we have

[x̂]2
1 − x2 = ([x̂]1 + x

)([x̂]1 − x
) ∼= 2x

([x̂]1 − x
)

[x̂]2
2 − y2 = ([x̂]2 + y

)([x̂]2 − y
) ∼= 2y

([x̂]2 − y
)

(11)

where x̂ was defined in (10), and x, y are the coordinates of the
source.
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