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This paper focuses on some critical issues in a recently reported approach [V. Singh, Improved LMI-
based criterion for global asymptotic stability of 2-D state-space digital filters described by Roesser
model using two’s complement overflow arithmetic, Digital Signal Process. 22 (2012) 471-475] for the
global asymptotic stability of two-dimensional (2-D) fixed-point state-space digital filters described by
the Roesser model employing two’s complement overflow arithmetic. In particular, it is highlighted that
the situation where Singh’s approach can be applied to ensure the global asymptotic stability of digital
filters in the presence of two’s complement overflow nonlinearities is not conceivable.
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1. Introduction

In the past few decades, a vast amount of research was devoted
to the study of the system theoretic problems of two-dimensional
(2-D) discrete dynamical systems. Such a study has predominantly
been motivated by a wide variety of applications of 2-D discrete
systems in many areas such as digital data filtering, image data
processing and transmission, seismographic data processing, gas
filtration, water stream heating, thermal processes in chemical re-
actors, 2-D digital control systems, river pollution modeling, grid
based wireless sensor networks, modeling of partial differential
equations, etc. [1-6].

In the implementation of stable and linear recursive digital fil-
ters using finite wordlength fixed-point processors, nonlinear ef-
fects are introduced owing to the overflow and quantization [7-9].
These nonlinear effects may result in the instability of the de-
signed filter. Therefore, a major concern is to find the conditions
under which the filter would be globally asymptotically stable.
Many publications relating to the issue of stability of digital filters
have appeared (see, for instance, [7-25] and the references cited
therein). The common types of overflow nonlinearities are satura-
tion, zeroing, triangular and two’s complement [9,24]. The two’s
complement arithmetic adder is known to be the cheapest among
all overflow arithmetic adders employed in practice. The effect of
two’s complement overflow nonlinearities on the stability of one-
dimensional (1-D) digital filters has been investigated in [8,11-17].
The stability properties of 2-D digital filters have been studied in
the presence of two’s complement overflow [18-22], various com-
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binations of quantization and overflow [23], generalized overflow
[24], and quantization [25].

This paper is directly inspired by a recent paper [22]. In [22],
Singh has reported a criterion for the global asymptotic stability
of zero-input 2-D digital filters described by the Roesser model
[26] implemented with two’s complement arithmetic for the addi-
tion operation. Splitting the two’s complement nonlinearity sector
[=1,1] into two smaller sectors [0, 1] and [—1, 0] together with
making use of a certain ‘assumption’ is a key step in the approach
of [22]. The approach in [22] appears to be quite distinct from
other approaches [8,11-21,24].

The purpose of this paper is to highlight that, for the sys-
tems implemented with two’s complement overflow adders, the
‘assumption’ made in [22] is a major restriction in disguise and it is
hard to conceive any situation where Singh’s approach [22] can be
applied to ensure the global asymptotic stability of digital filters in
the presence of two’s complement overflow nonlinearities. It will
be demonstrated that all the examples considered in [22] fail to
validate this ‘assumption’ and, consequently, the approach [22] is
incapable of detecting the global asymptotic stability. Further, the
implication of Singh’s approach [22] is discussed in the context of
1-D digital filters with two’s complement overflow arithmetic.

2. System description and criteria for global asymptotic stability

Consider the state-space quarter-plane nonlinear 2-D system
described by the Roesser model [26]:
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where ke Z,, 1€ Z,, and Z denotes the set of nonnegative inte-
gers. The two space coordinates k and [ are horizontal coordinate
and vertical coordinate, respectively. The state vectors &' (k,[) € R™
and xV(k,l) € R" convey information horizontally and vertically,
respectively. The matrices A;; € R™™, A, € R™", Ay; € R™™,
Ay € R™M are the coefficient matrices, and the superscript T de-
notes the transpose. The overflow nonlinearities fl.h(yi.1 k, 1), i =
1,2,....,mand f(y}(k.D),i=1,2,...,n are characterized by

fyiteb)=yikD, iflyidenl<t] o
| F (k)| <1, if |y kD] > 1) e
(2a)

F (VYD) =y (k.. if!yi“(’@’)!@], i=12,...m.

IfY (v} kD) <1, if [yY (k. D| > 1

(2b)

We observe that two’s complement overflow nonlinearities belong
to (2). As in [22] (see [8,13-17,21,24] also), we assume that the ef-
fects of quantization are negligible. Such an assumption is based on
a common approximation (i.e., ‘decoupling approximation’ [8,9])
where the effects of quantization and overflow are treated as mu-
tually independent or decoupled. This ‘decoupling approximation’
can be justified if the signals are represented by a sufficiently large
number of bits [8,9]. It is understood that system (1) has a finite
set of initial conditions, i.e., there exist two positive integers K and
L such that [18-21,23,24]

x'(k,0) =0, x"0,1) =0,

k>K; I>1, (3)

where 0 denotes the null vector or null matrix of appropriate di-
mension. In this context, it may be pointed out that the initial
conditions used in [22] are wrongly defined as xV(k,I) =0, k > K;
x"(k,1) =0, | > L. Following [22], it can be verified that the initial
conditions are required to be chosen as (3) in order to arrive at
[22, Theorem 1].

Eqs. (1)-(3) represent a class of 2-D discrete dynamical sys-
tems implemented in finite wordlength fixed-point processors us-
ing two’s complement signal representation. Examples of such sys-
tems are common in engineering and include 2-D digital filters
with two’s complement overflow arithmetic, 2-D nonlinear digi-
tal control systems, models of various physical phenomena (e.g.,
compartmental systems, single carriageway traffic flow [25], etc.),
various dynamical processes represented by the Darboux equation
[3] and so on. An example of the system represented by (1)-(3)
can be found in wireless sensor networks [5], where each node
typically employs 16-bit fixed-point microprocessors for data pro-
cessing. Thus, the nonlinearities due to finite wordlength are in-
herently present in such systems.

Note that the nonlinear function while satisfying (2) belongs to
the sector [—1, 1]. Next, consider the sector given by [0, 1], i.e.,

floy=0, o< Iy D)y, D <y kD),

i=1,2,...,m, (4a)
RO =0, 0< f(y kD)y! kD <y! kD,
i=1,2,...,n, (4b)
and the sector given by [—1, 0], i.e.,
floy=0, =yl kD < fAYIK D) YK D <O,
i=1,2,...,m, (5a)
frO)=0, —y" < f (v k,D)y! kD) <0,
i=1,2,...,n. (5b)

Recently, Singh [22] has studied the problem of global asymp-
totic stability of the 2-D system (1)-(3). In analyzing the stability
of the equilibrium x, = 0 of the 2-D system (1)-(3), [22] makes
use of the following assumption.

Assumption 1. (See Singh [22].) All nonlinearities (2) in the system
(1) at a time either belong to (4) or to (5), but not to both (4)
and (5).

It may be mentioned that, in the case of 1-D systems, a tem-
poral variable (time) plays a central role. Ref. [22] deals with a
class of nonlinear 2-D discrete systems in which time does not
have a role. Indeed, the independent variables of interest are spa-
tial variables. Therefore, in the context of 2-D discrete systems,
Assumption 1 may be modified as follows.

Assumption 2. For any set of initial conditions satisfying (3), all
nonlinearities (2) in the system (1) along the line k + [ = p either
belong to (4) or to (5) (but not to both (4) and (5)) for any non-
negative integer p.

Now, the main result of [22] may be stated as follows.

Theorem 1. (See Singh [22].) Under Assumption 2, the equilibrium
X. = 0 of the system (1)-(3) is globally asymptotically stable if there
exist positive definite symmetric matrices P" € R™ ™M, PV ¢ R™" and
a positive definite diagonal matrix D such that

P -A"D
[—DA 2D—P]>0’ (6)

where P = P" @ PY = [’;h I?v] and ‘>’ signifies that the matrix is pos-
itive definite.

Remark 1. Observe that, in the approach of [22], condition (6)
alone cannot ensure the global asymptotic stability of (1)-(3). If
the system fails to confirm Assumption 2, the global asymptotic
stability of the system cannot be established via the approach in
[22]. In view of the characteristics of the two’s complement over-
flow nonlinearities, it is not natural to expect that Assumption 2
is valid automatically for all kinds of systems given by (1)-(3). The
state trajectories of the 2-D system (1)-(3) depend on the state
matrix A for a given set of initial conditions. Thus, the validity of
Assumption 2 is also dependent on the system parameters and ini-
tial conditions.

3. Critical issues associated with Assumption 2

Define
m+n

si= Y lagl, i=1.2,....(m+n), (7)
j=1
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