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Mass cytometry by time-of-flight experiments allow analysis of over 40 functional and phenotypic cellular
markers simultaneously at the single-cell level. The data dimensionality escalation accentuates limitations,
inherent to manual analysis, as being subjective, labor-intensive, slow, and often incapable of showing the
detailed features of each unique cell within populations. The subsequent challenge of examining, visualizing,
and presenting mass cytometry data has motivated continuous development of dimensionality reduction
methods. As a result, an increasing recognition of the inherent diversity and complexity of cellular networks is
emerging, with the discovery of unexpected cell subpopulations, hierarchies, and developmental pathways,
such as those existing within the immune system. Here, we briefly review some frequently used and accessible
mass cytometry data analysis tools, including principal component analysis (PCA); spanning-tree progression
analysis of density-normalized events (SPADE); t-distributed stochastic neighbor embedding (t-SNE)ebased
visualization (viSNE); automatic classification of cellular expression by nonlinear stochastic embedding
(ACCENSE); and cluster identification, characterization, and regression (CITRUS). Mass cytometry, used
together with these innovative analytic tools, has the power to lead to key discoveries in investigative
dermatology, including but not limited to identifying signaling phenotypes with predictive value for early
diagnosis, prognosis, or relapse and a thorough characterization of intratumor heterogeneity and disease-
resistant cell populations, that may ultimately unveil novel therapeutic approaches.
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INTRODUCTION
New methods are being developed to examine, visualize, and
present the multidimensional complexity of cellular function
and identity and the role of individual cells within biological
systems. Mass cytometry by time-of-flight mass spectrometry
(CyTOF)1 currently has the capacity to allow investigation of
40 or more distinct parameters at the single-cell level
(Figure 1). Although the technique has not yet been widely
adopted within the field of investigative dermatology, it has
potential to, for example, allow identification of cell signals
for early diagnosis in cutaneous T-cell lymphoma, allow early
detection or predict relapse in psoriasis and atopic dermatitis,
and allow thorough characterization of drug-resistant cell
populations in skin cancer, eventually unveiling new thera-
pies. The large amount of data generated and potential of the
technique to delineate rare cell subsets has driven the need to
develop dimensionality reduction methods and analysis
algorithms to best analyze and represent mass cytometry data.
A significant limitation of traditional data clustering methods
through biaxial plots and histograms, such as has been used
to represent traditional flow cytometry data, is that pre-
existing knowledge of the defining markers of each popula-
tion is required. This limits the ability of researchers to
discover unexpected cellular subsets and does not allow ex-
amination of system-level phenotypic diversity. Furthermore,

manual analysis of individual markers and combinations of
markers is a subjective, slow, and labor-intensive process,
which results in a significant scalability restriction and can
introduce several inherent biases. Although CyTOF technol-
ogy and experimental methodology have been described in
detail in previous reviews (Doan et al., 2015; Matos et al.,
2017), comprehensive understanding is also required with
respect to the tools available for analysis of high-dimensional
datasets to make meaningful use of the results. In this short
review, we focus on some of the most commonly used and
accessible novel CyTOF data analysis tools, including prin-
cipal component analysis (PCA), spanning-tree progression
analysis of density-normalized events (SPADE), t-distributed
stochastic neighbor embedding (t-SNE)ebased visualization
(viSNE), automatic classification of cellular expression by
nonlinear stochastic embedding (ACCENSE), and cluster
identification, characterization, and regression (CITRUS).

DIMENSION REDUCTION AND VISUALIZATION
ALGORITHMS
PCA
PCA is a well-established and widely used tool for visual-
izing multidimensional data that was adopted to analyze
large mass cytometry datasets (Bendall et al., 2011;
Jackson, 1991; Newell et al., 2012). PCA identifies those
parameters among a certain dataset that present the most
variance by generating linear combinations from a large list
of parameters into new compound variables (principal
components). As a result, the quotient of the relative vari-
ation of each principle component over the total variance
gives an idea of the effectiveness of each component in
separating out data points. In addition, PCA results in
models that can be used to project new data points in
linear time. For example, it allows graphical visualization
of the expression intensity of several functional markers (y-
axis) throughout the cell differentiation process (x-axis)
(Figure 2). PCA also allows visualization of the data in
three-dimensional space, often prominently displaying the
first three data components of maximal variance. However,
this feature can also be a limitation, because it may mask
noteworthy biological differences that are more subtle
variances in the data. Another constraint is the inherent
assumption that the given data are parametric. PCA also
represents the data through linear projections, which may
not be representative of the inherent structure of the orig-
inal data. To overcome this constraint, nonlinear methods
such as t-SNE (described in following sections) were
developed for high-dimensional data analysis. Newell at
al. (2012) used PCA to represent simultaneously 25
markers from a single cell sample, hence quantifying the
expression of functional markers among several CD8þ T-
cell subsets. This representation method displayed a
greater phenotypic and functional complexity among
CD8þ T cells than previously appreciated (Figure 2). The
holistic study of many functional and phenotypic markers
and their expression levels through several differentiation
subsets would not be possible by conventional manual
analysis. This study also observed that subsets that develop
in response to different viruses have distinct combinatorial
patterns of cytokine expression, showing the remarkable

SUMMARY POINTS
� New methods are being continuously developed
to analyze and best represent multidimensional,
complex CyTOF data.

� Principal component analysis (PCA) provides a
visualization of the data in three-dimensional
space and identifies the parameters with the
most variance among the dataset.

� Spanning-tree progression analysis of density-
normalized events (SPADE) clusters cells into a
minimum-spanning hierarchical tree for two-
dimensional visualization.

� In t-distributed stochastic neighbor embedding
(t-SNE)ebased visualization (viSNE) and auto-
matic classification of cellular expression by
nonlinear stochastic embedding (ACCENSE),
each single cell data point has a unique location
in a two-dimensional representation, reflecting
the cells’ immunophenotypic similarity or differ-
ences in high-dimensional space.

� Cluster identification, characterization, and
regression (CITRUS) identifies cellular features
that correlate to an experimental endpoint of
interest.

1 The abbreviation “CyTOF”, in addition to being the name of this technique, is also
the name of a commercial product that enables researchers to use the method. The
authors are in no way endorsing any specific commercial products.
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