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Abstract

In this paper, the design problems of variable and adaptive fractional order finite impulse response (FIR) differentiators

are investigated. First, the fractional differencing method and weighted least squares (WLS) approach are presented to

design variable fractional order differentiators which can be implemented by the efficient Farrow structure. Next, an

adaptive fractional order differentiator is developed and applied to estimate the parameters of 1/f noise from the finite

observation data set. The parameters are updated by using least mean squares (LMS) adaptive algorithm. Finally, the

variable fractional order differentiator is used to reduce the error rate of handwritten signature verification system.
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1. Introduction

During the past three decades, the fractional
calculus has received great attentions in many
engineering applications and science including fluid
flow, automatic control, electrical networks, elec-
tromagnetic theory and image processing [1–6]. The
integer order n of derivative Dnf ðxÞ ¼ dnf ðxÞ=dxn of
function f(x) is generalized to fractional order
Duf ðxÞ, where u is a real number. One of the
important research topics in fractional calculus is to
implement the fractional operator Du in continuous
and discrete time domains. An excellent survey of
this implementation has been presented in the recent
paper [7]. For continuous time case, some methods

for obtaining an approximated rational function
using evaluation, interpolation and curve fitting
techniques have been studied. These methods
include Carlson’s method, Roy’s method, Chareff’s
method and Oustaloup’s method [8–11]. For dis-
crete time case, there have been several methods
presented to design FIR and IIR filters for
implementing operator Du, including fractional
differencing formula or Euler method, trapezoidal
rule or Tustin method, continued fraction expan-
sion, optimization method and Prony’s method
[12–17].

On the other hand, the variable digital filter
design has become an important research topic in
recent years [18–27]. The main feature of variable
filter is that the frequency characteristics can be
quickly changed without re-designing a new filter,
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so the variable filter is particularly useful for on-line
signal processing. Generally speaking, the design of
variable digital filter can be classified into following
two categories. One is the digital filters with
adjustable magnitude response. This kind of filter
is useful in audio signal processing and noise
reduction [19,20]. The other is the digital filter with
adjustable fractional delay response. This type of
filter has been widely used in the applications of
time adjustment in digital receiver, antenna array
processing, speech coding and synthesis, modeling
of music instruments and A/D conversion, etc.
[21–26]. An excellent survey of the variable frac-
tional delay filter design has been presented in
tutorial paper [21]. Except the above two kinds of
filters, the design of digital filters with adjustable
magnitude and fractional delay responses have been
also considered recently [27].

In this paper, we will study the discrete-time
implementation of fractional differential operator
Du, that is, the design of fractional order digital
differentiator (FODD). In the conventional FODD
designs, the order u is assumed to be a fixed
fractional number. In this paper, we will extend
the order u to be an adjustable fractional number.
Thus, it is a research branch of variable filter design.
In [28], the Riemann–Liouville definition of frac-
tional operator with variable order has been
introduced and the behavior has been also studied.
In Section 2, the fractional differencing method and
weighted least squares (WLS) approach are pre-
sented to design variable fractional order differ-
entiators which can be implemented by the efficient
Farrow structure. In Section 3, an adaptive frac-
tional order differentiator is developed and applied
to estimate the parameters of 1/f noise from the
finite observation data set. The parameters are
updated by using least mean squares (LMS)
adaptive algorithm. In Section 4, the fractional
order differentiator is used to reduce the error rate
of handwritten signature verification system. Final-
ly, a conclusion is made.

2. Variable fractional order differentiator

In this section, two methods will be presented to
design variable fractional order FIR differentiator
whose ideal frequency response is given by

Dðo; uÞ ¼ joð Þue�jIo, (1)

where I is a prescribed delay and u is a variable or
adjustable fractional number in the range [�0.5,0.5].

Because practical digital filters will introduce time
delay, the linear phase term e�jIo is considered in
the ideal response, see Eq. (24) in [15]. Clearly, the
magnitude response of D(o, u) is equal to ou and the
phase response is �Ioþ 0:5up. The transfer func-
tion of the variable FIR filter used to approximate
this specification is chosen as follows:

Hðz; uÞ ¼
XN

n¼0

hn uð Þz�n, (2)

where hnðuÞ are the polynomial functions in u of
degree M, i.e.,

hnðuÞ ¼
XM
m¼0

anmum. (3)

Since hnðuÞ is real valued, the frequency response
Hðejo; uÞ is conjugate symmetric, i.e.,

Hðe�jo; uÞ ¼ Hðejo; uÞ�, (4)

where * denotes the complex conjugate. Substituting
(3) into (2), the transfer function can be rewritten as

Hðz; uÞ ¼
XM
m¼0

XN

n¼0

anmz�num

¼
XM
m¼0

GmðzÞum, ð5Þ

where GmðzÞ ¼
PN

n¼0anmz�n. Thus, the filter H(z, u)
can be implemented by the efficient Farrow
structure shown in Fig. 1 once the sub-filters Gm(z)
have been designed. Because the sub-filters Gm(z)
are all fixed, we can adjust the parameter u to
change the order of the differentiator. Now, the
design problem becomes how to find anm such that
the frequency response Hðejo; uÞ fits D(o, u) as well
as possible. In the following, two methods are
developed to solve this design problem. One is the
fractional differencing method, the other is the WLS
method. The details are described below.
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Fig. 1. The Farrow structure for variable fractional order

differentiator, where order u is adjustable.
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