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Abstract

Heat transfer problems obey to diffusion phenomenon. In this paper we show that they can be modelled with the help of

fractional systems. The simulation is based on a fractional integrator operator where the non-integer behaviour acts only

over a limited spectral band. Starting with frequency considerations derived from the analysis of a diffusion problem,

a more general approximation of the fractional system is proposed. A state-space model is presented that gives an accurate

simulation for transients, and with which it is possible to carry out an output-error technique to estimate the

model parameters. Numerical simulations of the heat transfer problem are used to illustrate the improvements of the

proposed model.
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1. Introduction

The diffusive interface is characterized by frac-
tional order dynamic behaviour, i.e. characterized
by long memory transients and infinite dimensional
structure [1]. Physically, such phenomenon appear
when the transients of the systems are governed by
the diffusion equation. A well known example is the
case of heat transfer where the flux and the
temperature at the interface are interrelated through
fractional order operators [2,3]. These dynamics

also appear in the case of an induction machine,
with Foucault currents inside rotor bars [4–7]. Other
examples are found in electrochemistry [8] and
viscoelasticity [9]. Solutions to such problems have
been developed to model this phenomenon [8,10,11].
The major limitation of these approaches, including
the one that we proposed (with one fractional
integrator), is that they rely on the properties of the
fractional order model, but do not take into account
the characteristics of the diffusive phenomenon,
particularly at the interface.

The objective of this article is to analyse the
frequency behaviour of a diffusive interface, and to
show how the problem geometry influences on the
phase plot. Using this analysis, it is then possible to
define the frequency objectives of the approximate
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fractional model and to propose a structure
allowing to these objectives to be satisfied. Practi-
cally, this analysis shows that a model with one
fractional integrator [12–14] cannot satisfy all
the objectives, whereas a model with two fractional
integrators, one of them being constrained to
n ¼ 0:5, gives a good fit to the simulated experi-
ment. The numerical simulations presented in
this paper show that this new fractional model
permits to satisfy the most important frequency
objectives, using system identification in the time
domain.

1.1. Approximate modelling of a diffusive interface

Let us consider the classical ‘‘wall’’ problem used
to analyse heat transfer [2], represented in Fig. 1.

Temperature Tðx; tÞ is assumed to be uniform on
any plane parallel to the faces A and B. Let fðx; tÞ
be the heat flux passing through the wall at abscissa
x. Tðx; tÞ and fðx; tÞ are governed by heat diffusion
equations (1) and (2).

qTðx; tÞ

qt
¼ a

q2Tðx; tÞ
qx2

, (1)

fðx; tÞ ¼ �l
qTðx; tÞ

qx
(2)

with

� a ¼ l=r c: diffusivity,
� l: thermal conductivity,
� r: mass density,
� c: specific heat.

1.2. Diffusive interface

Eqs. (1) and (2) specify the relation between fðx; tÞ
and Tðx; tÞ, respectively, considered as system input
ðuðtÞÞ and output ðyðtÞÞ when x ¼ 0, which define the

diffusive interface; then yðtÞ ¼ Tð0; tÞ. The boundary
conditions on the faces A and B are:

fð0; tÞ ¼ uðtÞ;

fðL; tÞ ¼
TðL; tÞ

R
;

8<: (3)

where R is the thermal resistance between the wall
and the air (on face B). Because the model is carried
out around an operating point, air temperature is
assumed to be constant and equal to zero.

Thus, the modelling of this interface (at x ¼ 0) is
equivalent of the determination of the transfer
function HðsÞ between Y ðsÞ and UðsÞ (where Y ðsÞ

and UðsÞ are, respectively, the Laplace transforms
of y tð Þ and u tð Þ):

HðsÞ ¼
lR

ffiffiffiffiffiffiffiffiffiffi
ðs=aÞ

p
þ 1þ lR

ffiffiffiffiffiffiffiffiffiffi
ðs=aÞ

p
� 1

� �
e�ðs=aÞL

2

l
ffiffiffiffiffiffiffi
s=a

p
lR

ffiffiffiffiffiffiffiffiffiffi
ðs=aÞ

p
þ 1� lR

ffiffiffiffiffiffiffiffiffiffi
ðs=aÞ

p
� 1

� �
e�ðs=aÞL

2� � . (4)

Let us consider that heat flux f 0; tð Þ is a step input
whose value is f. Then

T 0; sð Þ ¼ HðsÞ
f
s
. (5)

If we consider t!1 (or equivalently s! 0) we get

Tð0;1Þ ¼ yð1Þ ¼ Rf (6)

that is to say that the wall behaves like a thermal
resistance equal to zero.

Reciprocally, at very short times (t! 0 or
s!1) we get

HðsÞ ’

ffiffiffi
a
p

ls0:5
(7)

that is to say that the wall behaves like a non-integer
integrator whose order is equal to 0.5.

Remark. This phenomenon is not restricted to the
heat diffusion, it is also observed in the case of
induced currents in the rotor bars of an induction
machine. A numerical simulation using finite
elements [6] has permitted an estimate of the
frequency response of this phenomenon for a
trapesoid rotor bar (see Fig. 2). One can verify that
for o!1, order n tends to 0:5, characterizing
diffusion phenomena. On the other hand, the
influence of the bar geometry appears at intermedi-
ary frequencies: in this example, the phase exceeds
�45�, that is to say that n is higher than 0:5 in the
concerned frequency domain.

A first conclusion is that diffusive interfaces
can be modelled using a fractional operator
(or non-integer one) where the order n ¼ 0:5 is
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Fig. 1. Wall problem for heat transfer.
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