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Abstract

We consider uncertain fractional-order linear time invariant (FO-LTI) systems with interval coefficients. Our focus is on
the robust controllability issue for interval FO-LTI systems in state-space form. We revisit the controllability problem for
the case when there is no interval uncertainty. It turns out that the controllability check for FO-LTI systems amounts to
checking the controllability of conventional integer order state space. Based on this fact, we further show that, for interval
FO-LTI systems, the key is to check the linear dependency of a set of interval vectors. Illustrative examples are presented.
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1. Introduction

Based on fractional order calculus [1-4], frac-
tional order dynamic systems and controls have
been gaining increasing attention in research com-
munities [5-9]. Pioneering works in applying frac-
tional calculus in dynamic systems and controls
include [10-13] while some recent developments can
be found in [14-16].
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Stability and controllability concepts are funda-
mental to any dynamic control systems including
fractional order control systems [17,18]. In [19-24],
stability results of fractional order control systems
were presented while in [25], the first discussion
about the controllability of fractional order control
systems can be found. For interval FO-LTI systems,
the first result on stability was discussed in [26] and
further in [27] with even interval uncertainties (in
the fractional order!). However, the controllability
issue for interval FO-LTI systems has never been
addressed. In this paper, we will present a method
for checking the robust controllability for FO-LTI
systems in the state space form. Based on the results
of [28,29], we address the robust controllability issue
via a sufficient linear independency condition of
interval vectors. Note that, nobody has presented
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any property about the interval vectors except [28]
although the interval vector concepts have been
introduced in [30,31]. Furthermore, in robust
control, the model uncertainty has been effectively
and popularly handled by “interval” concept. Great
amount of literatures are available under the term
“interval” such as interval algebra [30,31], interval
polynomial [32,33], Schur stability of interval
matrices [34,35], Hurwitz stability of interval
matrices [36-38], interval polynomial matrices [39],
eigenvalues of interval matrices [40—42], and robust
control with parameter uncertainty [43,44]. It is
obviously beneficial to consider interval fractional
order system as in [27,26]. For the ease of our
presentation, we first re-visit the controllability issue
of FO-LTI mainly based on [25]. Then, we briefly
present the robust controllability issue of interval
FO-LTI systems based on the concept of linear
dependency of inter vectors [28]. Some examples will
be given for illustrations.

2. Controllability of FO-LTI systems revisited

We adopt the Caputo definition for fractional
derivative of order o of any function f(¢) [45,46]:

/@ _ 1 ALC)
der I'(e—n) )y (1 — 7y

dr, (n—1l<oa<n).

(1)
Based on the definition of (1), the Laplace trans-
form of the fractional derivative is
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In general, an LTI FOS can be described by the
differential equation or the corresponding transfer
function of non-commensurate real orders of the

following form:
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where oy, ;. (k=0,1,2,...) are real numbers and
without loss of generality they can be arranged as
0y > -+ >0 >0, f,> >0 > P

In the particular case of commensurate order
systems, it holds that, oy = ok, f;, = ok, (0<a<1),
Vk € Z, and the transfer function has the following
form:
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G(s) = K (4)

With N> M, the function G(s) becomes a proper
rational function in the complex variable s* which
can be expanded in partial fractions of the following
form:
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where 4;(i=1,2,...,N) are the roots of the
polynomial P(s*) or the system poles which are
assumed to be simple without loss of generality.
Then, it is straightforward to consider the following
fractional order LTI system in state-space form

d*x(1)
de
where a€(0,1], xe%",

B e %™, rank(B) = r.

Similar to the conventional controllability con-
cept [17], the controllability of (6) is defined as
follows:

)
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Definition 2.1. The FO-LTI system (6) is said to be
controllable on [z, ] iff for any initial state x(t)
and final state x(¢r), there exists a control function
u(t) defined on [ty,#s] which can drive the initial
state x(#) to the final state x(z).

In what follows, we will show that, the controll-
ability condition is the same as the integer order
case. First, the solution of (6) is given by

X(s) = (s*1 — A ' 'x(19) + (s*1 — A)~'BU(s)
(7

in Laplace s-domain and
x(1) = Eq1(A1")x(2)
t
+ [ = B - B
to

in time-domain where E, g(z) is the Mittag—Leffler
function in two parameters defined as
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a generalization of exponential function, i.e.,
o0
E
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Now, for any given fy, #; and the states x(#p) and
x(tr), let us see under what condition there exists a
unique control function u(¢) for ¢ € [ty, ¢7]. From (8),
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