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Abstract 

This paper investigates the problem of single-channel noise reduction in the time domain. The objective is to find a lower dimensional 
filter that can yield a noise reduction performance as close as possible to or even better than that obtained by the full-rank solution. This 
is achieved in three steps. First, we transform the observation signal vector sequence, through a semi-orthogonal matrix, into a sequence of 
transformed signal vectors with a reduced dimension. Second, a reduced-rank filter is applied to get an estimate of the clean speech in the 
transformed domain. Third, the estimate of the clean speech in the time domain is obtained by an inverse semi-orthogonal transformation. The 
focus of this paper is on the derivation of semi-orthogonal transformations under certain estimation criteria in the first step and the design of 
the reduced-rank optimal filters that can be used in the second step. We show how noise reduction using the principle of rank reduction can be 
cast as an optimal filtering problem, and how different semi-orthogonal transformations affect the noise reduction performance. Simulations 
are performed under various conditions to validate the deduced filters for noise reduction. 
© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

The problem of single-channel noise reduction is to recover 
a clean speech signal of interest from its microphone observa- 
tions ( Benesty and Chen, 2011; Benesty et al., 2009; Loizou, 
2007 ). Due to the importance and broad range of applications, 
a great deal of efforts have been devoted to this problem over 
the last decades and many algorithms have been developed 

e.g., Wiener (1949) , Boll (1979) , Berouti et al. (1979) , Lim 

and Oppenheim (1979) , Ephraim and Malah (1984) , Trees 
and Harry (2001) . However, these algorithms achieve noise 
reduction generally by paying a price of adding speech dis- 
tortion. One exceptional case is the reduced-rank or subspace 
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method, which has the potential to introduce less distortion if 
the desired signal correlation matrix is rank deficient and this 
rank is correctly estimated. This paper is, therefore, devoted 

to the reduced-rank filtering methods. 
The idea of “reduced rank” was first developed in the field 

of signal estimation ( Huffel, 1993; Moor, 1993; Scharf, 1991; 
Scharf and Tufts, 1987; Tufts and Kumaresan, 1982a, 1982b ). 
It was then applied to the noise reduction problem in the so- 
called subspace approach ( Dendrinos et al., 1991 ), where the 
singular value decomposition (SVD) of the noisy data ma- 
trix was used to estimate and remove the noise subspace and 

the estimate of the clean signal was then obtained from the 
remaining subspace. This approach gained more popularity 

when Ephraim and Van Trees proposed to decompose the 
covariance matrix of the noisy observation vector ( Ephraim 

and Trees, 1995 ). The subspace method was found better 
than the widely used spectral subtraction ( Boll, 1979 ) for 
noise reduction in the sense that it has less speech distortion 

with little music residual noise. Today, the principle has been 
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studied to deal with not only white ( Ephraim and Trees, 1995 ) 
but also colored noise ( Hu and Loizou, 2003; Huang and 

Zhao, 1998; 2000; Mittal and Phamdo, 2000; Rezayee and 

Gazor, 2001 ). Besides the SVD ( Moor, 1993; Scharf, 1991; 
Scharf and Tufts, 1987; Tufts and Kumaresan, 1982a, 1982b ) 
and the eigenvalue decomposition (EVD) ( Ephraim and Trees, 
1995; Hu and Loizou, 2003 ), truncated (Q)SVD ( Hansen and 

Jensen, 1998; Jensen et al., 1995 ) and triangular decompo- 
sitions ( Hansen and Jensen, 2007 ) were also investigated in 

the subspace approach. More recent works on reduced-rank 

filtering can be found in Hansen and Jensen (2013) , Nørholm 

et al. (2014) , Zhang et al. (2014) . 
This paper is also concerned with the application of 

reduced-rank principle to noise reduction. But unlike most ex- 
isting work (e.g., Dendrinos et al., 1991; Ephraim and Trees, 
1995; Goldstein et al., 1999; 1998; Scharf, 1991; Scharf and 

Tufts, 1987 ), which exploits the structure of either the sig- 
nal data or covariance matrix to find the signal and noise 
subspaces, this paper develops a more flexible framework. 
We choose a semi-orthogonal matrix to do data transforma- 
tion instead of directly decomposing the subspaces. The semi- 
orthogonal matrix is not unique, and it can be derived under 
different criteria. The resulting semi-orthogonal matrices rep- 
resent the characteristic of both the signal and noise, and thus 
might be used in various conditions. Another contribution of 
the paper is the derivation of the optimal filters under the 
reduced-rank framework. 

In this framework, noise reduction is achieved in three 
steps. We first prefilter the full-length observed vector by 

a semi-orthogonal matrix, resulting in a reduced-dimension 

vector. In other words, we apply a linear transformation that 
transforms the observed data vector to a new coordinate sys- 
tem where the basis are defined by the columns of the semi- 
orthogonal matrix. This is workable because the dimension 

of the signal subspace is smaller than that of the observed 

noisy signal space. The second step is to design an optimal 
reduced-rank filter and apply this filter to get an estimate of 
the clean speech in the transformed domain. Note that the 
optimal filter is matrix-valued and the noisy signal is pro- 
cessed by a vector-by-vector basis. The estimate of the clean 

speech in the time domain is finally obtained by an inverse 
semi-orthogonal transformation. We will discuss how to de- 
rive different semi-orthogonal transformations under certain 

estimation criteria and how to design different reduced-rank 

optimal filters. We will also illustrate the flexibility of this 
new framework in controlling the compromise between noise 
reduction and speech distortion. 

The rest of the paper is organized as follows. In Section 2 , 
the signal model and problem formulation are presented. Sec- 
tion 3 gives the definition of the semi-orthogonal transforma- 
tion. Then in Section 4 , the principle of linear filtering with 

a rectangular matrix is discussed. Section 5 presents some 
performance measures for evaluation and analysis of noise 
reduction. In Section 6 , different optimal filters are derived 

under a given semi-orthogonal transformation. Different semi- 
orthogonal transformations are discussed in Section 7 . Some 

simulations are presented in Section 8 . Finally, conclusions 
are drawn in Section 9 . 

2. Signal model and problem formulation 

The noise reduction problem considered in this paper is 
one of recovering the desired speech signal x ( k ), k being the 
discrete-time index, of zero mean from the noisy observa- 
tion (sensor signal) ( Benesty and Chen, 2011; Benesty et al., 
2009 ): 

y(k) = x(k) + v(k) , (1) 

where v ( k ), assumed to be a zero-mean random process, is the 
unwanted additive noise that can be either white or colored 

but is uncorrelated with x ( k ). All signals are considered to be 
real and broadband. 

The signal model given in (1) can be put into a vector 
form by considering L most recent successive time samples, 
i.e., 

y(k) = x(k) + v(k) , (2) 

where 

y(k) 
� = 

[
y(k) y(k − 1) · · · y(k − L + 1) 

]T 
(3) 

is a vector of length L , superscript T denotes transpose of a 
vector or a matrix, and x ( k ) and v ( k ) are defined in a similar 
way to y ( k ). Since x ( k ) and v ( k ) are uncorrelated by assump- 
tion, the correlation matrix (of size L × L ) of the noisy signal 
can be written as 

R y 
� = E 

[
y(k) y 

T (k) 
] = R x + R v , (4) 

where E [ ·] denotes mathematical expectation, and R x 
� = 

E 

[
x (k) x 

T (k) 
]

and R v 
� = E 

[
v (k) v 

T (k) 
]

are the correlation 

matrices of x ( k ) and v ( k ), respectively. The noise correla- 
tion matrix, R v , is assumed to be full rank, i.e., equal to 

L . Then, the objective of noise reduction in this paper is to 

find a “good” estimate of the vector x ( k ) from the observa- 
tion signal vector y ( k ) in the sense that the additive noise 
is significantly reduced while the desired signal is not much 

distorted. 

3. Semi-orthogonal transformation 

We recall that x ( k ) is the desired signal vector that we 
want to estimate from the observation signal vector, y ( k ). 

Let 

T = 

[
t 0 t 1 · · · t P−1 

]
(5) 

be a semi-orthogonal matrix of size L × P , i.e., T 

T T = I P , 
where I P is the P × P identity matrix and P ≤ L . We define 
the transformed desired signal vector of length P as 

x 

′ (k) 
� = T 

T x(k) (6) 

= 

[
x ′ 0 (k) x ′ 1 (k) · · · x ′ P−1 (k) 

]T 
, 
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