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a b s t r a c t

A simple expression is developed for covariance-matrix correction in stochastic model
updating. The need for expensive forward propagation of uncertainty through the model
is obviated by application of a formula based only on the sensitivity of the outputs at the
end of a deterministic updating process carried out on the means of the parameters. Two
previously published techniques are show to reduce to the same simple formula within
the assumption of small perturbation about the mean. It is shown, using a simple
numerical example, that deterministic updating of the parameter means can result in
correct reconstruction of the output means even when the updating parameters are
wrongly chosen. If the parameters are correctly chosen, then the covariance matrix of the
outputs is correctly reconstructed, but when the parameters are wrongly chosen is found
that the output covariance is generally not reconstructed accurately. Therefore, the
selection of updating parameters on the basis of reconstructing the output means is not
sufficient to ensure that the output covariances will be well reconstructed. Further theory
is then developed by assessing the contribution of each candidate parameter to the output
covariance matrix, thereby enabling the selection of updating parameters to ensure that
both the output means and covariances are reconstructed by the updated model. This
latter theory is supported by further numerical examples.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

One of the first attempts to address the problem of updating or ‘correcting’ finite element models was the statistical
approach proposed by Collins, Hart, Hasselman and Kennedy in 1974 [1]. Since that time much attention has been con-
centrated mainly on deterministic model updating methods, including particularly parameterisation of finite element
models for updating and regularisation of the generally ill-posed model-updating problem. Details can be found in Refs. [2–
4]. Very recently, new research has addressed the problem of stochastic model updating, which we review briefly in the
following paragraphs.

Jacquelin et al. [5] developed a model updating technique using random matrix theory resulting in a mean stiffness and
covariance matrix representing the structural uncertainty in a global way from measured variability in natural frequencies
and modes shapes. Adhikari and Friswell [6] used a sensitivity approach to update distributed parameters, typically the
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bending rigidity EI of a beam, represented as random fields using the Karhunen–Loève expansion. Goller et al. [7] addressed
the problem of insufficient information by the application of multi-dimensional Gaussian kernel densities derived from
sparse modal data. This allowed design insensitivity to be quantified, so that the proposed method could be said to be
robust. Mthembu et al. [8] used Bayesian evidence for model selection.

Early examples of Bayesian model updating include the work of Beck and Katafygiotis [9,10] whereby experimental data
is used to progressively revise the updating parameters expressed by a posterior probability density function. One problem
with the Bayesian approach has been the large computational effort associated with sampling using Markov chain Monte-
Carlo (MCMC) algorithms. This has now been largely overcome as demonstrated by Goller et al. [11] using parallelisation of
the updating code together with the transitional MCMC algorithm, which identifies parameter regions with the highest
posterior probability mass. Zhang et al. [12] used the polynomial chaos expansion as a surrogate for the full FE model as well
as an evolutionary MCMC algorithm where a population of chains is updated by mutation to avoid being trapped in local
basins of attraction.

The problem of variability in the dynamics of nominally identical test pieces seems to have been addressed first by Mares
et al. [13,14] using a multivariate gradient-regression approach. This was combined with a minimum variance estimator so
that the means of the resulting distributions represented the most likely parameters of a next-tested structure and the
standard deviations could be interpreted as indicators of confidence in the means. Hua et al. [15] were the first to consider
the uncertainty of multiple nominally-identical test pieces from the frequentist viewpoint, where the distribution is
meaningful in terms of the ‘spread’ of updating parameters. They used a perturbation approach, as did Haddad Khodaparast
et al. [16], the latter showing excellent results using first-order perturbation whereas the method described in [15] required
the computation of second-order sensitivities. Govers and Link [17] extended the classical sensitivity model-updating
method by a Taylor series expansion of the analytical output covariance matrix and obtained parameter mean values and
covariances. This technique has since been demonstrated very effectively, and compared to an interval updating method
[18], using data obtained by repeated disassembly and reassembly of the DRL AIRMOD structure [19,20]. Fang et al. [21,22]
used a response-surface surrogate for the full FE model together with Monte-Carlo simulation (MCS). Hypothesis testing by
analysis of variance (ANOVA) using the statistical F-test evaluation was applied to determine the contribution of each
updating parameter (or a group of parameters) to the total variance of each measured output. If the F-test returned a value
that exceeded a threshold, then the chosen parameter was deemed to contribute significantly to the variance of the output.

In this paper, a simple formula is developed for covariance updating that can be applied without the use of expensive
forward propagation by MCS to determine the output covariance matrix. Two previous stochastic model updating methods
are shown to be equivalent to the same formula with the assumption of small perturbations about the mean. It is
demonstrated using a 3-degree of freedom model that the choice of updating parameters is critical to this process. If the
correct parameters are chosen, then the output covariance matrix is reconstructed faithfully. However, this is generally not
the case when wrongly chosen parameters are used, even though the output means may be accurately reconstructed. It is
shown that the scaled output covariance matrix may be decomposed to allow the contributions of each candidate parameter
to be assessed. Use of the classical linearised sensitivity permits the assessment to be carried out efficiently. Numerical
examples are used to illustrate the performance of the technique.

2. Updating the covariance matrix

The stochastic model updating problem may be expressed as,

ze�ze
� �¼ Sj θ�θ

� �
jþ1

þεjþ1 ð1Þ

by the assumption of small perturbation about the mean. In Eq. (1) the over-bar denotes the mean, ze; ze are experimentally
measured outputs, typically natural frequencies and mode-shape terms, θjþ1 is the ðjþ1Þth estimate of parameter dis-
tribution to be determined, with mean θjþ1. The mean sensitivity matrix is denoted by Sj ¼ S θj

� �
and εjþ1 represents errors

introduced from various sources including inaccuracy of the model and measurement imprecision.
Model updating of the means is a deterministic problem [16,17] given by,

θjþ1 ¼ θjþTj ze�zaj θj

� �� �
ð2Þ

where zaj θj

� �
is the a predicted output of the model at the jth iteration. The transformation matrix Tj is the generalised

pseudo inverse of the sensitivity matrix Sj,

Tj ¼ S
T
j WεSjþWϑ

� ��1
S
T
j ð3Þ

and Wε and Wϑ are weighting matrices, to allow for regularisation of ill-posed sensitivity equations [4].
It is seen from Eq. (1) that the matrix of output covariances is given by,

Cov Δze;Δze
� �¼ SjCov Δθjþ1;Δθjþ1

� �
S
T
j þCov εjþ1; εjþ1

� � ð4Þ
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