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a b s t r a c t

Data-driven vibration-based damage detection techniques can be competitive because of
their lower instrumentation and data analysis costs. The use of autoregressive model
coefficients (ARMCs) as damage sensitive features (DSFs) is one such technique. So far, like
with other DSFs, either full sets of coefficients or subsets selected by trial-and-error have
been used, but this can lead to suboptimal composition of multivariate DSFs and
decreased damage detection performance. This study enhances the selection of ARMCs for
statistical hypothesis testing for damage presence. Two approaches for systematic ARMC
selection, based on either adding or eliminating the coefficients one by one or using a
genetic algorithm (GA) are proposed. The methods are applied to a numerical model of an
aerodynamically excited large composite wind turbine blade with disbonding damage.
The GA out performs the other selection methods and enables building multivariate DSFs
that markedly enhance early damage detectability and are insensitive to measurement
noise.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The world’s energy infrastructure is undergoing significant changes due to the increasing interest in, and demand for
renewable energy. For the sector of wind energy, the relentless strive for more efficient energy harvesting leads to growing
numbers and sizes of wind turbines (WTs) and erections in remote areas, such as offshore, where winds are stronger and
more reliable and predictable. However, the increasing operation and maintenance expenditure, which can make up to 20%
of the total energy production cost [1], affect adversely the production targets and expected revenues. Knowledge of the
current structural state and condition obtained from interpreting remotely monitored data can counteract this issue.

The process of continuous monitoring of structures using sensors, extracting information and knowledge from these
observations and determining the structural performance, condition and reliability is referred to as structural health
monitoring (SHM) [2]. There has been large amount of effort during the past decade to develop effective SHM methods for
application in mechanical, aerospace, civil and other structural systems [3–9]. Several non-destructive testing techniques
based on different physical principles, such as thermal imaging, X-radioscopy, electrical resistance and ultrasonic waves,
have been proposed for structural damage detection (SDD) in wind turbine components [10,11]. However, the majority of
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List of symbols

Roman letters

D Mahalanobis distance
F Cumulative probability distribution function;

aerodynamic force acting on blade element
H Hypothesis
K Number of time lags
M Aerodynamic moment acting on blade

element
N Number of surface nodes in blade finite ele-

ment model
Gaussian distribution
Parental population for genetic algorithm

Q Modified Ljung–Box–Pierce statistic
S Vector cosine distance in Eq. (21)
T2 Hotelling’s T2 statistic
a Autoregressive coefficient; linear aerodynamic

load distribution coefficient across blade
b Uniform aerodynamic load distribution

coefficient
c Moving average coefficient; linear load dis-

tribution coefficient along blade
e Noise term
f Fitness function; aerodynamic nodal forces
m Dimensionality of damage sensitive feature

vector
n Number of samples
p Autoregressive order
q Moving average order
r Autocorrelation function
s Binary selection variable in genetic algorithm
s Binary selection vector in genetic algorithm
t Discrete time
x Edge-wise coordinate in finite element blade

model; edge-wise coordinate in AeroDyn
model

y Thickness-wise coordinate in finite element
blade model; thickness-wise coordinate in
AeroDyn model

z Zero-mean time series; flap-wise coordinate
in finite element blade model; flap-wise
coordinate in AeroDyn model

Greek letters

Σ Variance–covariance matrix
Δ Difference operator
α Level of significance
β Number of flipped entries in selection vector

in genetic algorithm
κ Number of parental individuals in genetic

algorithm
υ Damage sensitive feature
υ Damage sensitive feature vector
μ Mean value
μ Mean value vector

ρ Cross-correlation coefficient
s Standard deviation
s2 Variance

2χ Chi-square probability distribution function

Subscripts

0 Null hypothesis
1 Alternative hypothesis
N Normal to rotor plane
P Pitching
T Tangential to rotor plane
c Current state
d Damaged state
h Healthy state
offsp Offspring
pl Pooled
r Blade element in AeroDyn
ref Reference
rel Relative
temp Temporary
x x direction
y y direction

Superscripts

T Transpose
\widehat Estimate

List of acronyms

ACF Autocorrelation function
AIC Akaike information criterion
ARMC Autoregressive model coefficient
AR Autoregressive
ARC Autoregressive coefficient
ARMA Autoregressive moving average
DOF Degree of freedom
DSF Damage sensitive feature
EMD Empirical mode decomposition
FE Finite element
GA Genetic algorithm
HHT Hilbert–Huang transform
IMF Intrinsic mode function
LE Leading edge
MA Moving average
MAC Moving average coefficient
NBI Next-Best-In
NREL National Renewable Energy Laboratory
NWO Next-Worst-Out
PAC Partial autocorrelation
SDD Structural damage detection
SHM Structural health monitoring
SNL Sandia National Laboratory
TE Trailing edge
WT Wind turbine; wavelet transform
WTB Wind turbine blade
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